Spaces:
Runtime error
Runtime error
File size: 8,184 Bytes
8a8b805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
from argparse import Namespace
import numpy as np
import torch
from models.StyleGANControler import StyleGANControler
class Model:
def __init__(
self, checkpoint_path, truncation=0.5, use_average_code_as_input=False
):
self.truncation = truncation
self.use_average_code_as_input = use_average_code_as_input
ckpt = torch.load(checkpoint_path, map_location="cpu")
opts = ckpt["opts"]
opts["checkpoint_path"] = checkpoint_path
self.opts = Namespace(**ckpt["opts"])
self.net = StyleGANControler(self.opts)
self.net.eval()
self.net.cuda()
self.target_layers = [0, 1, 2, 3, 4, 5]
def random_sample(self):
z1 = torch.randn(1, 512).to("cuda")
x1, w1, f1 = self.net.decoder(
[z1],
input_is_latent=False,
randomize_noise=False,
return_feature_map=True,
return_latents=True,
truncation=self.truncation,
truncation_latent=self.net.latent_avg[0],
)
w1_initial = w1.clone()
x1 = self.net.face_pool(x1)
image = (
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
)
return (
image,
{
"w1": w1.cpu().detach().numpy(),
"w1_initial": w1_initial.cpu().detach().numpy(),
},
) # return latent vector along with the image
def latents_to_tensor(self, latents):
w1 = latents["w1"]
w1_initial = latents["w1_initial"]
w1 = torch.tensor(w1).to("cuda")
w1_initial = torch.tensor(w1_initial).to("cuda")
x1, w1, f1 = self.net.decoder(
[w1],
input_is_latent=True,
randomize_noise=False,
return_feature_map=True,
return_latents=True,
)
x1, w1_initial, f1 = self.net.decoder(
[w1_initial],
input_is_latent=True,
randomize_noise=False,
return_feature_map=True,
return_latents=True,
)
return (w1, w1_initial, f1)
def zoom(self, latents, dz, sxsy=[0, 0], stop_points=[]):
w1, w1_initial, f1 = self.latents_to_tensor(latents)
w1 = w1_initial.clone()
vec_num = abs(dz) / 5
dz = 100 * np.sign(dz)
x = torch.from_numpy(np.array([[[1.0, 0, dz]]], dtype=np.float32)).cuda()
f1 = torch.nn.functional.interpolate(f1, (256, 256))
y = f1[:, :, sxsy[1], sxsy[0]].unsqueeze(0)
if len(stop_points) > 0:
x = torch.cat(
[x, torch.zeros(x.shape[0], len(stop_points), x.shape[2]).cuda()], dim=1
)
tmp = []
for sp in stop_points:
tmp.append(f1[:, :, sp[1], sp[0]].unsqueeze(1))
y = torch.cat([y, torch.cat(tmp, dim=1)], dim=1)
if not self.use_average_code_as_input:
w_hat = self.net.encoder(
w1[:, self.target_layers].detach(),
x.detach(),
y.detach(),
alpha=vec_num,
)
w1 = w1.clone()
w1[:, self.target_layers] = w_hat
else:
w_hat = self.net.encoder(
self.net.latent_avg.unsqueeze(0)[:, self.target_layers].detach(),
x.detach(),
y.detach(),
alpha=vec_num,
)
w1 = w1.clone()
w1[:, self.target_layers] = (
w1.clone()[:, self.target_layers]
+ w_hat
- self.net.latent_avg.unsqueeze(0)[:, self.target_layers]
)
x1, _ = self.net.decoder([w1], input_is_latent=True, randomize_noise=False)
x1 = self.net.face_pool(x1)
result = (
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
)
return (
result,
{
"w1": w1.cpu().detach().numpy(),
"w1_initial": w1_initial.cpu().detach().numpy(),
},
) # return latent vector along with the image
def translate(
self, latents, dxy, sxsy=[0, 0], stop_points=[], zoom_in=False, zoom_out=False
):
w1, w1_initial, f1 = self.latents_to_tensor(latents)
w1 = w1_initial.clone()
dz = -5.0 if zoom_in else 0.0
dz = 5.0 if zoom_out else dz
dxyz = np.array([dxy[0], dxy[1], dz], dtype=np.float32)
dxy_norm = np.linalg.norm(dxyz[:2], ord=2)
dxyz[:2] = dxyz[:2] / dxy_norm
vec_num = dxy_norm / 10
x = torch.from_numpy(np.array([[dxyz]], dtype=np.float32)).cuda()
f1 = torch.nn.functional.interpolate(f1, (256, 256))
y = f1[:, :, sxsy[1], sxsy[0]].unsqueeze(0)
if len(stop_points) > 0:
x = torch.cat(
[x, torch.zeros(x.shape[0], len(stop_points), x.shape[2]).cuda()], dim=1
)
tmp = []
for sp in stop_points:
tmp.append(f1[:, :, sp[1], sp[0]].unsqueeze(1))
y = torch.cat([y, torch.cat(tmp, dim=1)], dim=1)
if not self.use_average_code_as_input:
w_hat = self.net.encoder(
w1[:, self.target_layers].detach(),
x.detach(),
y.detach(),
alpha=vec_num,
)
w1 = w1.clone()
w1[:, self.target_layers] = w_hat
else:
w_hat = self.net.encoder(
self.net.latent_avg.unsqueeze(0)[:, self.target_layers].detach(),
x.detach(),
y.detach(),
alpha=vec_num,
)
w1 = w1.clone()
w1[:, self.target_layers] = (
w1.clone()[:, self.target_layers]
+ w_hat
- self.net.latent_avg.unsqueeze(0)[:, self.target_layers]
)
x1, _ = self.net.decoder([w1], input_is_latent=True, randomize_noise=False)
x1 = self.net.face_pool(x1)
result = (
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
)
return (
result,
{
"w1": w1.cpu().detach().numpy(),
"w1_initial": w1_initial.cpu().detach().numpy(),
},
)
def change_style(self, latents):
w1, w1_initial, f1 = self.latents_to_tensor(latents)
w1 = w1_initial.clone()
z1 = torch.randn(1, 512).to("cuda")
x1, w2 = self.net.decoder(
[z1],
input_is_latent=False,
randomize_noise=False,
return_latents=True,
truncation=self.truncation,
truncation_latent=self.net.latent_avg[0],
)
w1[:, 6:] = w2.detach()[:, 0]
x1, w1_new = self.net.decoder(
[w1],
input_is_latent=True,
randomize_noise=False,
return_latents=True,
)
result = (
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
)
return (
result,
{
"w1": w1_new.cpu().detach().numpy(),
"w1_initial": w1_new.cpu().detach().numpy(),
},
)
def reset(self, latents):
w1, w1_initial, f1 = self.latents_to_tensor(latents)
x1, w1_new, f1 = self.net.decoder(
[w1_initial],
input_is_latent=True,
randomize_noise=False,
return_feature_map=True,
return_latents=True,
)
result = (
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
)
return (
result,
{
"w1": w1_new.cpu().detach().numpy(),
"w1_initial": w1_new.cpu().detach().numpy(),
},
)
|