Spaces:
Runtime error
Runtime error
""" | |
File: logger.py | |
Modified by: Senthil Purushwalkam | |
Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 | |
Email: spurushw<at>andrew<dot>cmu<dot>edu | |
Github: https://github.com/senthilps8 | |
Description: | |
""" | |
import pdb | |
import tensorflow as tf | |
from torch.autograd import Variable | |
import numpy as np | |
import scipy.misc | |
import os | |
try: | |
from StringIO import StringIO # Python 2.7 | |
except ImportError: | |
from io import BytesIO # Python 3.x | |
class Logger(object): | |
def __init__(self, log_dir, name=None): | |
"""Create a summary writer logging to log_dir.""" | |
if name is None: | |
name = 'temp' | |
self.name = name | |
if name is not None: | |
try: | |
os.makedirs(os.path.join(log_dir, name)) | |
except: | |
pass | |
self.writer = tf.summary.FileWriter(os.path.join(log_dir, name), | |
filename_suffix=name) | |
else: | |
self.writer = tf.summary.FileWriter(log_dir, filename_suffix=name) | |
def scalar_summary(self, tag, value, step): | |
"""Log a scalar variable.""" | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) | |
self.writer.add_summary(summary, step) | |
def image_summary(self, tag, images, step): | |
"""Log a list of images.""" | |
img_summaries = [] | |
for i, img in enumerate(images): | |
# Write the image to a string | |
try: | |
s = StringIO() | |
except: | |
s = BytesIO() | |
scipy.misc.toimage(img).save(s, format="png") | |
# Create an Image object | |
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), | |
height=img.shape[0], | |
width=img.shape[1]) | |
# Create a Summary value | |
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum)) | |
# Create and write Summary | |
summary = tf.Summary(value=img_summaries) | |
self.writer.add_summary(summary, step) | |
def histo_summary(self, tag, values, step, bins=1000): | |
"""Log a histogram of the tensor of values.""" | |
# Create a histogram using numpy | |
counts, bin_edges = np.histogram(values, bins=bins) | |
# Fill the fields of the histogram proto | |
hist = tf.HistogramProto() | |
hist.min = float(np.min(values)) | |
hist.max = float(np.max(values)) | |
hist.num = int(np.prod(values.shape)) | |
hist.sum = float(np.sum(values)) | |
hist.sum_squares = float(np.sum(values**2)) | |
# Drop the start of the first bin | |
bin_edges = bin_edges[1:] | |
# Add bin edges and counts | |
for edge in bin_edges: | |
hist.bucket_limit.append(edge) | |
for c in counts: | |
hist.bucket.append(c) | |
# Create and write Summary | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) | |
self.writer.add_summary(summary, step) | |
self.writer.flush() | |
def to_np(self, x): | |
return x.data.cpu().numpy() | |
def to_var(self, x): | |
if torch.cuda.is_available(): | |
x = x.cuda() | |
return Variable(x) | |
def model_param_histo_summary(self, model, step): | |
"""log histogram summary of model's parameters | |
and parameter gradients | |
""" | |
for tag, value in model.named_parameters(): | |
if value.grad is None: | |
continue | |
tag = tag.replace('.', '/') | |
tag = self.name+'/'+tag | |
self.histo_summary(tag, self.to_np(value), step) | |
self.histo_summary(tag+'/grad', self.to_np(value.grad), step) | |