radames's picture
add inversion
d9778ff
raw
history blame
3.92 kB
from argparse import ArgumentParser
from configs.paths_config import model_paths
class TrainOptions:
def __init__(self):
self.parser = ArgumentParser()
self.initialize()
def initialize(self):
self.parser.add_argument('--exp_dir', type=str, help='Path to experiment output directory')
self.parser.add_argument('--dataset_type', default='ffhq_encode', type=str, help='Type of dataset/experiment to run')
self.parser.add_argument('--encoder_type', default='GradualStyleEncoder', type=str, help='Which encoder to use')
self.parser.add_argument('--input_nc', default=3, type=int, help='Number of input image channels to the psp encoder')
self.parser.add_argument('--label_nc', default=0, type=int, help='Number of input label channels to the psp encoder')
self.parser.add_argument('--output_size', default=1024, type=int, help='Output size of generator')
self.parser.add_argument('--batch_size', default=4, type=int, help='Batch size for training')
self.parser.add_argument('--test_batch_size', default=2, type=int, help='Batch size for testing and inference')
self.parser.add_argument('--workers', default=4, type=int, help='Number of train dataloader workers')
self.parser.add_argument('--test_workers', default=2, type=int, help='Number of test/inference dataloader workers')
self.parser.add_argument('--learning_rate', default=0.0001, type=float, help='Optimizer learning rate')
self.parser.add_argument('--optim_name', default='ranger', type=str, help='Which optimizer to use')
self.parser.add_argument('--train_decoder', default=False, type=bool, help='Whether to train the decoder model')
self.parser.add_argument('--start_from_latent_avg', action='store_true', help='Whether to add average latent vector to generate codes from encoder.')
self.parser.add_argument('--learn_in_w', action='store_true', help='Whether to learn in w space instead of w+')
self.parser.add_argument('--lpips_lambda', default=0.8, type=float, help='LPIPS loss multiplier factor')
self.parser.add_argument('--id_lambda', default=0, type=float, help='ID loss multiplier factor')
self.parser.add_argument('--l2_lambda', default=1.0, type=float, help='L2 loss multiplier factor')
self.parser.add_argument('--w_norm_lambda', default=0, type=float, help='W-norm loss multiplier factor')
self.parser.add_argument('--lpips_lambda_crop', default=0, type=float, help='LPIPS loss multiplier factor for inner image region')
self.parser.add_argument('--l2_lambda_crop', default=0, type=float, help='L2 loss multiplier factor for inner image region')
self.parser.add_argument('--moco_lambda', default=0, type=float, help='Moco-based feature similarity loss multiplier factor')
self.parser.add_argument('--stylegan_weights', default=model_paths['stylegan_ffhq'], type=str, help='Path to StyleGAN model weights')
self.parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to pSp model checkpoint')
self.parser.add_argument('--max_steps', default=500000, type=int, help='Maximum number of training steps')
self.parser.add_argument('--image_interval', default=100, type=int, help='Interval for logging train images during training')
self.parser.add_argument('--board_interval', default=50, type=int, help='Interval for logging metrics to tensorboard')
self.parser.add_argument('--val_interval', default=1000, type=int, help='Validation interval')
self.parser.add_argument('--save_interval', default=None, type=int, help='Model checkpoint interval')
# arguments for weights & biases support
self.parser.add_argument('--use_wandb', action="store_true", help='Whether to use Weights & Biases to track experiment.')
# arguments for super-resolution
self.parser.add_argument('--resize_factors', type=str, default=None, help='For super-res, comma-separated resize factors to use for inference.')
def parse(self):
opts = self.parser.parse_args()
return opts