Spaces:
Running
on
A10G
Running
on
A10G
File size: 4,581 Bytes
7f871a4 ee20381 8f77a4e 9bba95c 8f77a4e ee20381 8f77a4e c92b67b 9bba95c ee20381 9bba95c ee20381 183a6f7 ee20381 183a6f7 ee20381 183a6f7 ee20381 7f871a4 8e89c60 ee20381 c3efa02 8e89c60 7f871a4 6b5ab59 8f77a4e ee20381 9bba95c ee20381 9bba95c ee20381 7f871a4 ee20381 7f871a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import numpy as np
import PIL.Image
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse
import io
import os
from pathlib import Path
from db import Database
import uuid
import logging
from fastapi import FastAPI, Request, HTTPException
from asyncio import Lock
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = os.environ.get("USE_TORCH_COMPILE", "0") == "1"
SPACE_ID = os.environ.get("SPACE_ID", "")
DEV = os.environ.get("DEV", "0") == "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
IMGS_PATH = DB_PATH / "imgs"
DB_PATH.mkdir(exist_ok=True, parents=True)
IMGS_PATH.mkdir(exist_ok=True, parents=True)
database = Database(DB_PATH)
generate_lock = Lock()
dtype = torch.bfloat16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
prior_pipeline = StableCascadePriorPipeline.from_pretrained(
"stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16
).to(device)
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained(
"stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16
).to(device)
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(
prior_pipeline.prior, mode="reduce-overhead", fullgraph=True
)
decoder_pipeline.decoder = torch.compile(
decoder_pipeline.decoder, mode="max-autotune", fullgraph=True
)
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 20,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 10,
decoder_guidance_scale: float = 0.0,
num_images_per_prompt: int = 1,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
prior_output = prior_pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=prior_num_inference_steps,
negative_prompt=negative_prompt,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
)
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=decoder_num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
output_type="pil",
).images
return decoder_output[0]
app = FastAPI()
origins = [
"https://huggingface.co",
"http://huggingface.co",
"https://huggingface.co/",
"http://huggingface.co/",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.middleware("http")
async def validate_origin(request: Request, call_next):
if DEV:
return await call_next(request)
if request.headers.get("referer") not in origins:
raise HTTPException(status_code=403, detail="Forbidden")
return await call_next(request)
@app.get("/image")
async def generate_image(
prompt: str, negative_prompt: str = "", seed: int = 2134213213
):
cached_img = database.check(prompt, negative_prompt, seed)
if cached_img:
logging.info(f"Image found in cache: {cached_img[0]}")
return StreamingResponse(open(cached_img[0], "rb"), media_type="image/jpeg")
logging.info(f"Image not found in cache, generating new image")
async with generate_lock:
pil_image = generate(prompt, negative_prompt, seed)
img_id = str(uuid.uuid4())
img_path = IMGS_PATH / f"{img_id}.jpg"
pil_image.save(img_path)
img_io = io.BytesIO()
pil_image.save(img_io, "JPEG")
img_io.seek(0)
database.insert(prompt, negative_prompt, str(img_path), seed)
return StreamingResponse(img_io, media_type="image/jpeg")
@app.get("/")
async def main():
# redirect to https://huggingface.co/spaces/multimodalart/stable-cascade
return RedirectResponse(
"https://multimodalart-stable-cascade.hf.space/?__theme=system"
)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|