Spaces:
Sleeping
Sleeping
first
Browse files- .gitignore +3 -0
- Dockerfile +25 -0
- app.py +49 -0
- requirements.txt +6 -0
- visualblocks/__init__.py +3 -0
- visualblocks/server.py +317 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
__pycache__
|
3 |
+
*.py[cod]
|
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
# Set up a new user named "user" with user ID 1000
|
10 |
+
RUN useradd -m -u 1000 user
|
11 |
+
# Switch to the "user" user
|
12 |
+
USER user
|
13 |
+
# Set home to the user's home directory
|
14 |
+
ENV HOME=/home/user \
|
15 |
+
PATH=/home/user/.local/bin:$PATH \
|
16 |
+
PYTHONPATH=$HOME/app \
|
17 |
+
PYTHONUNBUFFERED=1
|
18 |
+
|
19 |
+
# Set the working directory to the user's home directory
|
20 |
+
WORKDIR $HOME/app
|
21 |
+
|
22 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
23 |
+
COPY --chown=user . $HOME/app
|
24 |
+
|
25 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
import tensorflow_hub as hub
|
4 |
+
from tensorflow.python.ops.numpy_ops import np_config
|
5 |
+
from visualblocks import register_vb_fn, Server
|
6 |
+
|
7 |
+
np_config.enable_numpy_behavior()
|
8 |
+
|
9 |
+
hub_handle = "https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2"
|
10 |
+
hub_module = hub.load(hub_handle)
|
11 |
+
|
12 |
+
|
13 |
+
# Register the function with visual blocks using the "generic" type (meaning
|
14 |
+
# tensors in, tensors out)
|
15 |
+
@register_vb_fn(type="generic")
|
16 |
+
def styleTransfer(tensors):
|
17 |
+
"""Inference function for use with Visual Blocks.
|
18 |
+
|
19 |
+
This function is passed to the Visual Blocks server, which calls it to
|
20 |
+
implement a Colab model runner block.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
tensors: A list of np.ndarrays as input tensors. For this particular
|
24 |
+
inference function, only the first two np.ndarrays are used. The first
|
25 |
+
np.ndarrays is the input content image as a tensor of size [1,
|
26 |
+
content_image_height, content_image_width, 3] with floating point pixel
|
27 |
+
values ranging from 0 to 1. The second np.ndarrays is the
|
28 |
+
input style image as a tensor of size [1, style_image_height,
|
29 |
+
style_image_width, 3] with floating point pixel values ranging from 0 to 1.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
tensors: A list of np.ndarrays as output tensors. For this particular
|
33 |
+
inference function, only the first item is used. The first item is the
|
34 |
+
output image as a tensor of size [1, height, width, 3] with floating point
|
35 |
+
pixel values ranging from 0 to 1.
|
36 |
+
"""
|
37 |
+
|
38 |
+
content_tensor = tf.constant(tensors[0], dtype=tf.float32)
|
39 |
+
style_tensor = tf.constant(tensors[1], dtype=tf.float32)
|
40 |
+
outputs = hub_module(content_tensor, style_tensor)
|
41 |
+
stylized_image = outputs[0].numpy()
|
42 |
+
|
43 |
+
return [
|
44 |
+
stylized_image,
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
server = Server()
|
49 |
+
server.run()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
tensorflow_hub
|
5 |
+
flask
|
6 |
+
portpicker
|
visualblocks/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"""Welcome to Visual Blocks!"""
|
2 |
+
|
3 |
+
from .server import Server, register_vb_fn
|
visualblocks/server.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
from flask import Flask
|
3 |
+
from flask import make_response
|
4 |
+
from flask import request
|
5 |
+
from flask import send_from_directory
|
6 |
+
from typing import Literal
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import portpicker
|
12 |
+
import requests
|
13 |
+
import shutil
|
14 |
+
import sys
|
15 |
+
import threading
|
16 |
+
import traceback
|
17 |
+
import urllib.parse
|
18 |
+
import zipfile
|
19 |
+
|
20 |
+
_VISUAL_BLOCKS_BUNDLE_VERSION = "1683568957"
|
21 |
+
|
22 |
+
# Disable logging from werkzeug.
|
23 |
+
#
|
24 |
+
# Without this, flask will show a warning about using dev server (which is OK
|
25 |
+
# in our usecase).
|
26 |
+
logging.getLogger("werkzeug").disabled = True
|
27 |
+
|
28 |
+
|
29 |
+
# Function registrations.
|
30 |
+
GENERIC_FNS = {}
|
31 |
+
TEXT_TO_TEXT_FNS = {}
|
32 |
+
TEXT_TO_TENSORS_FNS = {}
|
33 |
+
|
34 |
+
|
35 |
+
def register_vb_fn(
|
36 |
+
type: Literal["generic", "text_to_text", "text_to_tensors"] = "generic"
|
37 |
+
):
|
38 |
+
"""A function decorator to register python function with Visual Blocks.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
type:
|
42 |
+
the type of function to register for.
|
43 |
+
|
44 |
+
Currently, VB supports the following function types:
|
45 |
+
|
46 |
+
generic:
|
47 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
48 |
+
that Visual Blocks can call to implement a generic model runner block.
|
49 |
+
|
50 |
+
A generic inference function must take a single argument, the input
|
51 |
+
tensors as an iterable of numpy.ndarrays; run inference; and return the
|
52 |
+
output tensors, also as an iterable of numpy.ndarrays.
|
53 |
+
|
54 |
+
text_to_text:
|
55 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
56 |
+
that Visual Blocks can call to implement a text-to-text model runner
|
57 |
+
block.
|
58 |
+
|
59 |
+
A text_to_text function must take a string and return a string.
|
60 |
+
|
61 |
+
text_to_tensors:
|
62 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
63 |
+
that Visual Blocks can call to implement a text-to-tensors model runner
|
64 |
+
block.
|
65 |
+
|
66 |
+
A text_to_tensors function must take a string and return the output
|
67 |
+
tensors, as an iterable of numpy.ndarrays.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def decorator_register_vb_fn(func):
|
71 |
+
func_name = func.__name__
|
72 |
+
if type == "generic":
|
73 |
+
GENERIC_FNS[func_name] = func
|
74 |
+
elif type == "text_to_text":
|
75 |
+
TEXT_TO_TEXT_FNS[func_name] = func
|
76 |
+
elif type == "text_to_tensors":
|
77 |
+
TEXT_TO_TENSORS_FNS[func_name] = func
|
78 |
+
return func
|
79 |
+
|
80 |
+
return decorator_register_vb_fn
|
81 |
+
|
82 |
+
|
83 |
+
def _json_to_ndarray(json_tensor):
|
84 |
+
"""Convert a JSON dictionary from the web app to an np.ndarray."""
|
85 |
+
array = np.array(json_tensor["tensorValues"])
|
86 |
+
array.shape = json_tensor["tensorShape"]
|
87 |
+
return array
|
88 |
+
|
89 |
+
|
90 |
+
def _ndarray_to_json(array):
|
91 |
+
"""Convert a np.ndarray to the JSON dictionary for the web app."""
|
92 |
+
values = array.ravel().tolist()
|
93 |
+
shape = array.shape
|
94 |
+
return {
|
95 |
+
"tensorValues": values,
|
96 |
+
"tensorShape": shape,
|
97 |
+
}
|
98 |
+
|
99 |
+
|
100 |
+
def _make_json_response(obj):
|
101 |
+
body = json.dumps(obj)
|
102 |
+
resp = make_response(body)
|
103 |
+
resp.headers["Content-Type"] = "application/json"
|
104 |
+
return resp
|
105 |
+
|
106 |
+
|
107 |
+
def _ensure_iterable(x):
|
108 |
+
"""Turn x into an iterable if not already iterable."""
|
109 |
+
if x is None:
|
110 |
+
return ()
|
111 |
+
elif hasattr(x, "__iter__"):
|
112 |
+
return x
|
113 |
+
else:
|
114 |
+
return (x,)
|
115 |
+
|
116 |
+
|
117 |
+
def _add_to_registry(fns, registry):
|
118 |
+
"""Adds the functions to the given registry (dict)."""
|
119 |
+
for fn in fns:
|
120 |
+
registry[fn.__name__] = fn
|
121 |
+
|
122 |
+
|
123 |
+
def _is_list_of_nd_array(obj):
|
124 |
+
return isinstance(obj, list) and all(isinstance(elem, np.ndarray) for elem in obj)
|
125 |
+
|
126 |
+
|
127 |
+
def Server(
|
128 |
+
host="localhost",
|
129 |
+
port=7860,
|
130 |
+
generic=None,
|
131 |
+
text_to_text=None,
|
132 |
+
text_to_tensors=None,
|
133 |
+
height=900,
|
134 |
+
tmp_dir="/tmp",
|
135 |
+
read_saved_pipeline=True,
|
136 |
+
):
|
137 |
+
"""Creates a server that serves visual blocks web app in an iFrame.
|
138 |
+
|
139 |
+
Other than serving the web app, it will also listen to requests sent from the
|
140 |
+
web app at various API end points. Once a request is received, it will use the
|
141 |
+
data in the request body to call the corresponding functions that users have
|
142 |
+
registered with VB, either through the '@register_vb_fn' decorator, or passed
|
143 |
+
in when creating the server.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
generic:
|
147 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
148 |
+
that Visual Blocks can call to implement a generic model runner block.
|
149 |
+
|
150 |
+
A generic inference function must take a single argument, the input
|
151 |
+
tensors as an iterable of numpy.ndarrays; run inference; and return the output
|
152 |
+
tensors, also as an iterable of numpy.ndarrays.
|
153 |
+
|
154 |
+
text_to_text:
|
155 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
156 |
+
that Visual Blocks can call to implement a text-to-text model runner
|
157 |
+
block.
|
158 |
+
|
159 |
+
A text_to_text function must take a string and return a string.
|
160 |
+
|
161 |
+
text_to_tensors:
|
162 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
163 |
+
that Visual Blocks can call to implement a text-to-tensors model runner
|
164 |
+
block.
|
165 |
+
|
166 |
+
A text_to_tensors function must take a string and return the output
|
167 |
+
tensors, as an iterable of numpy.ndarrays.
|
168 |
+
|
169 |
+
height:
|
170 |
+
The height of the embedded iFrame.
|
171 |
+
|
172 |
+
tmp_dir:
|
173 |
+
The tmp dir where the server stores the web app's static resources.
|
174 |
+
|
175 |
+
read_saved_pipeline:
|
176 |
+
Whether to read the saved pipeline in the notebook or not.
|
177 |
+
"""
|
178 |
+
|
179 |
+
_add_to_registry(_ensure_iterable(generic), GENERIC_FNS)
|
180 |
+
_add_to_registry(_ensure_iterable(text_to_text), TEXT_TO_TEXT_FNS)
|
181 |
+
_add_to_registry(_ensure_iterable(text_to_tensors), TEXT_TO_TENSORS_FNS)
|
182 |
+
|
183 |
+
app = Flask(__name__)
|
184 |
+
|
185 |
+
# Disable startup messages.
|
186 |
+
cli = sys.modules["flask.cli"]
|
187 |
+
cli.show_server_banner = lambda *x: None
|
188 |
+
|
189 |
+
# Prepare tmp dir and log file.
|
190 |
+
base_path = tmp_dir + "/visual-blocks-colab"
|
191 |
+
if os.path.exists(base_path):
|
192 |
+
shutil.rmtree(base_path)
|
193 |
+
os.mkdir(base_path)
|
194 |
+
log_file_path = base_path + "/log"
|
195 |
+
open(log_file_path, "w").close()
|
196 |
+
|
197 |
+
# Download the zip file that bundles the visual blocks web app.
|
198 |
+
bundle_target_path = os.path.join(base_path, "visual_blocks.zip")
|
199 |
+
url = (
|
200 |
+
"https://storage.googleapis.com/tfweb/rapsai-colab-bundles/visual_blocks_%s.zip"
|
201 |
+
% _VISUAL_BLOCKS_BUNDLE_VERSION
|
202 |
+
)
|
203 |
+
r = requests.get(url)
|
204 |
+
with open(bundle_target_path, "wb") as zip_file:
|
205 |
+
zip_file.write(r.content)
|
206 |
+
|
207 |
+
# Unzip it.
|
208 |
+
# This will unzip all files to {base_path}/build.
|
209 |
+
with zipfile.ZipFile(bundle_target_path, "r") as zip_ref:
|
210 |
+
zip_ref.extractall(base_path)
|
211 |
+
site_root_path = os.path.join(base_path, "build")
|
212 |
+
|
213 |
+
def log(msg):
|
214 |
+
"""Logs the given message to the log file."""
|
215 |
+
now = datetime.now()
|
216 |
+
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
|
217 |
+
with open(log_file_path, "a") as log_file:
|
218 |
+
log_file.write("{}: {}\n".format(dt_string, msg))
|
219 |
+
|
220 |
+
@app.route("/api/list_inference_functions")
|
221 |
+
def list_inference_functions():
|
222 |
+
result = {}
|
223 |
+
if len(GENERIC_FNS):
|
224 |
+
result["generic"] = list(GENERIC_FNS.keys())
|
225 |
+
result["generic"].sort()
|
226 |
+
if len(TEXT_TO_TEXT_FNS):
|
227 |
+
result["text_to_text"] = list(TEXT_TO_TEXT_FNS.keys())
|
228 |
+
result["text_to_text"].sort()
|
229 |
+
if len(TEXT_TO_TENSORS_FNS):
|
230 |
+
result["text_to_tensors"] = list(TEXT_TO_TENSORS_FNS.keys())
|
231 |
+
result["text_to_tensors"].sort()
|
232 |
+
return _make_json_response(result)
|
233 |
+
|
234 |
+
# Note: using "/api/..." for POST requests is not allowed.
|
235 |
+
@app.route("/apipost/inference", methods=["POST"])
|
236 |
+
def inference_generic():
|
237 |
+
"""Handler for the generic api endpoint."""
|
238 |
+
result = {}
|
239 |
+
try:
|
240 |
+
func_name = request.json["function"]
|
241 |
+
inference_fn = GENERIC_FNS[func_name]
|
242 |
+
input_tensors = [_json_to_ndarray(x) for x in request.json["tensors"]]
|
243 |
+
output_tensors = inference_fn(input_tensors)
|
244 |
+
if not _is_list_of_nd_array(output_tensors):
|
245 |
+
result = {
|
246 |
+
"error": "The returned value from %s is not a list of ndarray"
|
247 |
+
% func_name
|
248 |
+
}
|
249 |
+
else:
|
250 |
+
result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
|
251 |
+
except Exception as e:
|
252 |
+
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
|
253 |
+
result = {"error": msg}
|
254 |
+
finally:
|
255 |
+
return _make_json_response(result)
|
256 |
+
|
257 |
+
# Note: using "/api/..." for POST requests is not allowed.
|
258 |
+
@app.route("/apipost/inference_text_to_text", methods=["POST"])
|
259 |
+
def inference_text_to_text():
|
260 |
+
"""Handler for the text_to_text api endpoint."""
|
261 |
+
result = {}
|
262 |
+
try:
|
263 |
+
func_name = request.json["function"]
|
264 |
+
inference_fn = TEXT_TO_TEXT_FNS[func_name]
|
265 |
+
text = request.json["text"]
|
266 |
+
ret = inference_fn(text)
|
267 |
+
if not isinstance(ret, str):
|
268 |
+
result = {
|
269 |
+
"error": "The returned value from %s is not a string" % func_name
|
270 |
+
}
|
271 |
+
else:
|
272 |
+
result["text"] = ret
|
273 |
+
except Exception as e:
|
274 |
+
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
|
275 |
+
result = {"error": msg}
|
276 |
+
finally:
|
277 |
+
return _make_json_response(result)
|
278 |
+
|
279 |
+
# Note: using "/api/..." for POST requests is not allowed.
|
280 |
+
@app.route("/apipost/inference_text_to_tensors", methods=["POST"])
|
281 |
+
def inference_text_to_tensors():
|
282 |
+
"""Handler for the text_to_tensors api endpoint."""
|
283 |
+
result = {}
|
284 |
+
try:
|
285 |
+
func_name = request.json["function"]
|
286 |
+
inference_fn = TEXT_TO_TENSORS_FNS[func_name]
|
287 |
+
text = request.json["text"]
|
288 |
+
output_tensors = inference_fn(text)
|
289 |
+
if not _is_list_of_nd_array(output_tensors):
|
290 |
+
result = {
|
291 |
+
"error": "The returned value from %s is not a list of ndarray"
|
292 |
+
% func_name
|
293 |
+
}
|
294 |
+
else:
|
295 |
+
result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
|
296 |
+
except Exception as e:
|
297 |
+
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
|
298 |
+
result = {"error": msg}
|
299 |
+
finally:
|
300 |
+
return _make_json_response(result)
|
301 |
+
|
302 |
+
@app.route("/", defaults={"path": "index.html"})
|
303 |
+
@app.route("/<path:path>")
|
304 |
+
def get_static(path):
|
305 |
+
"""Handler for serving static resources."""
|
306 |
+
return send_from_directory(site_root_path, path)
|
307 |
+
|
308 |
+
# Start background server.
|
309 |
+
# threading.Thread(target=app.run, kwargs={"host": host, "port": port}).start()
|
310 |
+
|
311 |
+
# A thin wrapper class for exposing a "display" method.
|
312 |
+
class _Server:
|
313 |
+
def run(self):
|
314 |
+
print("Visual Blocks server started at http://%s:%s" % (host, port))
|
315 |
+
app.run(host=host, port=port)
|
316 |
+
|
317 |
+
return _Server()
|