RadRotator / app.py
raddoc's picture
Update app.py
86ac9e8 verified
raw
history blame
4.78 kB
import os
import gradio as gr
import numpy as np
import skimage
from skimage import io
import torch
import monai
from monai.transforms import Rotate
# Placeholder for the 3D reconstruction model
class Simple3DReconstructionModel:
def __init__(self):
# Load your pre-trained model here
self.model = None # replace with actual model loading
def reconstruct_3d(self, image):
# Implement the 3D reconstruction logic here
# This is a placeholder example
return np.zeros((128, 128, 128))
def rotate_3d(self, volume, angles):
# Rotate the 3D volume using MONAI
rotate = Rotate(angles, mode='bilinear')
rotated_volume = rotate(volume)
return rotated_volume
def project_2d(self, volume):
# Project the 3D volume back to 2D
# This is a placeholder example
projection = np.max(volume, axis=0)
return projection
# Initialize the model
model = Simple3DReconstructionModel()
# Gradio helper functions
def process_image(img, xt, yt, zt):
# Reconstruct the 3D volume
volume = model.reconstruct_3d(img)
# Rotate the 3D volume
rotated_volume = model.rotate_3d(volume, (xt, yt, zt))
# Project the rotated volume back to 2D
output_img = model.project_2d(rotated_volume)
return output_img
def rotate_btn_fn(img, xt, yt, zt, add_bone_cmap=False):
try:
angles = (xt, yt, zt)
print(f"Rotating with angles: {angles}")
if isinstance(img, np.ndarray):
input_img_path = "uploaded_image.png"
skimage.io.imsave(input_img_path, img)
elif isinstance(img, str) and os.path.exists(img):
input_img_path = img
img = skimage.io.imread(input_img_path)
else:
raise ValueError("Invalid input image")
# Process the image with the model
out_img = process_image(img, xt, yt, zt)
if not add_bone_cmap:
return out_img
cmap = plt.get_cmap('bone')
out_img = cmap(out_img)
out_img = (out_img[..., :3] * 255).astype(np.uint8)
return out_img
except Exception as e:
print(f"Error in rotate_btn_fn: {e}")
return None
css_style = "./style.css"
callback = gr.CSVLogger()
with gr.Blocks(css=css_style, title="RadRotator") as app:
gr.HTML("RadRotator: 3D Rotation of Radiographs with Diffusion Models", elem_classes="title")
gr.HTML("Developed by:<br>Pouria Rouzrokh, Bardia Khosravi, Shahriar Faghani, Kellen Mulford, Michael J. Taunton, Bradley J. Erickson, Cody C. Wyles<br><a href='https://pouriarouzrokh.github.io/RadRotator'>[Our website]</a>, <a href='https://arxiv.org/abs/2404.13000'>[arXiv Paper]</a>", elem_classes="note")
gr.HTML("Note: The demo operates on a CPU, and since diffusion models require more computational capacity to function, all predictions are precomputed.", elem_classes="note")
with gr.TabItem("Demo"):
with gr.Row():
input_img = gr.Image(type='numpy', label='Input image', interactive=True, elem_classes='imgs')
output_img = gr.Image(type='numpy', label='Output image', interactive=False, elem_classes='imgs')
with gr.Row():
with gr.Column(scale=0.25):
pass
with gr.Column(scale=1):
gr.Examples(
examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "xr" in f],
inputs = [input_img],
label = "Xray Examples",
elem_id='examples',
)
with gr.Column(scale=0.25):
pass
with gr.Row():
gr.Markdown('Please select an example image, choose your rotation angles, and press Rotate!', elem_classes='text')
with gr.Row():
with gr.Column(scale=1):
xt = gr.Slider(label='x axis (medial/lateral rotation):', elem_classes='angle', value=0, minimum=-15, maximum=15, step=5)
with gr.Column(scale=1):
yt = gr.Slider(label='y axis (inlet/outlet rotation):', elem_classes='angle', value=0, minimum=-15, maximum=15, step=5)
with gr.Column(scale=1):
zt = gr.Slider(label='z axis (plane rotation):', elem_classes='angle', value=0, minimum=-15, maximum=15, step=5)
with gr.Row():
rotate_btn = gr.Button("Rotate!", elem_classes='rotate_button')
rotate_btn.click(fn=rotate_btn_fn, inputs=[input_img, xt, yt, zt], outputs=output_img)
try:
app.close()
gr.close_all()
except Exception as e:
print(f"Error closing app: {e}")
demo = app.launch(
max_threads=4,
share=True,
inline=False,
show_api=False,
show_error=False,
)