import torch import gradio as gr from typing import Tuple, Dict from torchvision import models import torch.nn as nn from model import get_transforms, create_effnetb2_model model = create_effnetb2_model(num_classes=3) model.eval() cns = ['negative', 'neutral', 'positive'] def predict(img) -> Tuple[Dict, float]: transform = get_transforms() img = transform(img).unsqueeze(0) with torch.inference_mode(): pred_probs = torch.softmax(model(img), dim=1) pred_labels_and_probs = {cns[i]: float(pred_probs[0][i]) for i in range(len(cns))} return pred_labels_and_probs title = "Effnetb2 Sentiment Analysis" description = "An EfficientNetB2 feature extractor computer vision model to analyse image sentiment." demo = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=3, label="Predictions")], title=title, description=description) if __name__ == "__main__": demo.launch()