Spaces:
Sleeping
Sleeping
File size: 9,842 Bytes
2d876d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
"""Module contains the score calculation algorithems."""
from functools import partial
from typing import Dict, List, Union, cast
from pfzy.types import SCORE_INDICES
SCORE_MIN = float("-inf")
SCORE_MAX = float("inf")
SCORE_GAP_LEADING = -0.005
SCORE_GAP_TRAILING = -0.005
SCORE_GAP_INNER = -0.01
SCORE_MATCH_CONSECUTIVE = 1.0
def _char_range_with(
char_start: str, char_stop: str, value, hash_table: Dict[str, Union[int, float]]
) -> Dict[str, Union[int, float]]:
"""Generate index mapping for `bonus` calculation.
Args:
char_start: Starting char of the range.
char_stop: Ending char of the range.
value: Value to give to the range of char.
hash_table: Base dictionary to add the mapping.
Returns:
A dictionary containing the given range with provided index.
Examples:
>>> _char_range_with("a", "d", 1, {})
{'a': 1, 'b': 1, 'c': 1, 'd': 1}
"""
hash_table = hash_table.copy()
hash_table.update(
(chr(uni_char), value)
for uni_char in range(ord(char_start), ord(char_stop) + 1)
)
return hash_table
lower_with = partial(_char_range_with, "a", "z")
upper_with = partial(_char_range_with, "A", "Z")
digit_with = partial(_char_range_with, "0", "9")
SCORE_MATCH_SLASH = 0.9
SCORE_MATCH_WORD = 0.8
SCORE_MATCH_CAPITAL = 0.7
SCORE_MATCH_DOT = 0.6
BONUS_MAP = {
"/": SCORE_MATCH_SLASH,
"-": SCORE_MATCH_WORD,
"_": SCORE_MATCH_WORD,
" ": SCORE_MATCH_WORD,
".": SCORE_MATCH_DOT,
}
BONUS_STATES = [{}, BONUS_MAP, lower_with(SCORE_MATCH_CAPITAL, BONUS_MAP)]
BONUS_INDEX = cast(Dict[str, int], digit_with(1, lower_with(1, upper_with(2, {}))))
def _bonus(haystack: str) -> List[float]:
"""Calculate bonus score for the given haystack.
The bonus are applied to each char based on the previous char.
When previous char is within the `BONUS_MAP` then additional bonus
are applied to the current char due to it might be the start of a new
word.
When encountered a mix case character, if the current char is capitalised then
if the previous char is normal case or within `BONUS_MAP`, additional bounus are applied.
Args:
haystack: String to calculate bonus.
Returns:
A list of float matching the length of the given haystack
with each index representing the bonus score to apply.
Examples:
>>> _bonus("asdf")
[0.9, 0, 0, 0]
>>> _bonus("asdf asdf")
[0.9, 0, 0, 0, 0, 0.8, 0, 0, 0]
>>> _bonus("asdf aSdf")
[0.9, 0, 0, 0, 0, 0.8, 0.7, 0, 0]
>>> _bonus("asdf/aSdf")
[0.9, 0, 0, 0, 0, 0.9, 0.7, 0, 0]
"""
prev_char = "/"
bonus = []
for char in haystack:
bonus.append(BONUS_STATES[BONUS_INDEX.get(char, 0)].get(prev_char, 0))
prev_char = char
return bonus
def _score(needle: str, haystack: str) -> SCORE_INDICES:
"""Use fzy logic to calculate score for `needle` within the given `haystack`.
2 2D array to track the score.
1. The running score (`running_score`) which represents the best score for the current position.
2. The result score (`result_score`) which tracks to overall best score that could be for the current positon.
With every consequtive match, additional bonuse score are given and for every non matching char, a negative
gap score is applied.
After the score is calculated, the final matching score will be stored at the last position of the `result_score`.
Backtrack the result by comparing the 2 2D array to find the corresponding indices.
Args:
needle: Substring to find in haystack.
haystack: String to be searched and scored.
Returns:
A tuple of matching score with a list of matching indices.
"""
needle_len, haystack_len = len(needle), len(haystack)
bonus_score = _bonus(haystack)
# smart case
if needle.islower():
haystack = haystack.lower()
# return all values if no query
if needle_len == 0 or needle_len == haystack_len:
return SCORE_MAX, list(range(needle_len))
# best score for the position
running_score: List[List[float]] = [
[0 for _ in range(haystack_len)] for _ in range(needle_len)
]
# overall best score at each position
result_score: List[List[float]] = [
[0 for _ in range(haystack_len)] for _ in range(needle_len)
]
for i in range(needle_len):
prev_score = SCORE_MIN
# gap between matching char
# more gaps, less score
gap_score = SCORE_GAP_TRAILING if i == needle_len - 1 else SCORE_GAP_INNER
for j in range(haystack_len):
if needle[i] == haystack[j]:
score = SCORE_MIN
if i == 0:
score = j * SCORE_GAP_LEADING + bonus_score[j]
elif j != 0:
score = max(
result_score[i - 1][j - 1] + bonus_score[j],
# consecutive match if value is higher
running_score[i - 1][j - 1] + SCORE_MATCH_CONSECUTIVE,
)
running_score[i][j] = score
result_score[i][j] = prev_score = max(score, prev_score + gap_score)
else:
running_score[i][j] = SCORE_MIN
# increment the best score with gap_score since no match
result_score[i][j] = prev_score = prev_score + gap_score
# backtrace to find the all indices of optimal matching
# starting from the end to pick the first possible match we encounter
i, j = needle_len - 1, haystack_len - 1
# use to determine if the current match is consequtive match
match_required = False
indices = [0 for _ in range(needle_len)]
while i >= 0:
while j >= 0:
# if the prev score is determined to be consecutive match
# then the current position must be a match
# e.g. haystack, needle = "auibywcabc", "abc"
# using match_required: [7, 8, 9]
# without match_required: [0, 8, 9]
if (
match_required or running_score[i][j] == result_score[i][j]
) and running_score[i][j] != SCORE_MIN:
match_required = (
i > 0
and j > 0
and result_score[i][j]
== running_score[i - 1][j - 1] + SCORE_MATCH_CONSECUTIVE
)
indices[i] = j
j -= 1
break
else:
j -= 1
i -= 1
return result_score[needle_len - 1][haystack_len - 1], indices
def _subsequence(needle: str, haystack: str) -> bool:
"""Check if needle is subsequence of haystack.
Args:
needle: Substring to find in haystack.
haystack: String to be searched and scored.
Returns:
Boolean indicating if `needle` is subsequence of `haystack`.
Examples:
>>> _subsequence("as", "bbwi")
False
>>> _subsequence("as", "bbaiws")
True
>>> _subsequence("sa", "bbaiws")
False
"""
needle, haystack = needle.lower(), haystack.lower()
if not needle:
return True
offset = 0
for char in needle:
offset = haystack.find(char, offset) + 1
if offset <= 0:
return False
return True
def fzy_scorer(needle: str, haystack: str) -> SCORE_INDICES:
"""Use fzy matching algorithem to match needle against haystack.
Note:
The `fzf` unordered search is not supported for performance concern.
When the provided `needle` is not a subsequence of `haystack` at all,
then `(-inf, None)` is returned.
See Also:
https://github.com/jhawthorn/fzy/blob/master/src/match.c
Args:
needle: Substring to find in haystack.
haystack: String to be searched and scored against.
Returns:
A tuple of matching score with a list of matching indices.
Examples:
>>> fzy_scorer("ab", "acb")
(0.89, [0, 2])
>>> fzy_scorer("ab", "acbabc")
(0.98, [3, 4])
>>> fzy_scorer("ab", "wc")
(-inf, None)
"""
if _subsequence(needle, haystack):
return _score(needle, haystack)
else:
return SCORE_MIN, None
def substr_scorer(needle: str, haystack: str) -> SCORE_INDICES:
"""Match needle against haystack using :meth:`str.find`.
Note:
Scores may be negative but the higher the score, the higher
the match rank. `-inf` score means no match found.
See Also:
https://github.com/aslpavel/sweep.py/blob/3f4a179b708059c12b9e5d76d1eb3c70bf2caadc/sweep.py#L837
Args:
needle: Substring to find in haystack.
haystack: String to be searched and scored against.
Returns:
A tuple of matching score with a list of matching indices.
Example:
>>> substr_scorer("ab", "awsab")
(-1.3, [3, 4])
>>> substr_scorer("ab", "abc")
(0.5, [0, 1])
>>> substr_scorer("ab", "iop")
(-inf, None)
>>> substr_scorer("ab", "asdafswabc")
(-1.6388888888888888, [7, 8])
>>> substr_scorer(" ", "asdf")
(0, [])
"""
indices = []
offset = 0
needle, haystack = needle.lower(), haystack.lower()
for needle in needle.split(" "):
if not needle:
continue
offset = haystack.find(needle, offset)
if offset < 0:
return SCORE_MIN, None
needle_len = len(needle)
indices.extend(range(offset, offset + needle_len))
offset += needle_len
if not indices:
return 0, indices
return (
-(indices[-1] + 1 - indices[0]) + 2 / (indices[0] + 1) + 1 / (indices[-1] + 1),
indices,
)
|