Spaces:
Sleeping
Sleeping
File size: 33,940 Bytes
2d876d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 |
"""
Processors are little transformation blocks that transform the fragments list
from a buffer before the BufferControl will render it to the screen.
They can insert fragments before or after, or highlight fragments by replacing the
fragment types.
"""
from __future__ import annotations
import re
from abc import ABCMeta, abstractmethod
from typing import TYPE_CHECKING, Callable, Hashable, cast
from prompt_toolkit.application.current import get_app
from prompt_toolkit.cache import SimpleCache
from prompt_toolkit.document import Document
from prompt_toolkit.filters import FilterOrBool, to_filter, vi_insert_multiple_mode
from prompt_toolkit.formatted_text import (
AnyFormattedText,
StyleAndTextTuples,
to_formatted_text,
)
from prompt_toolkit.formatted_text.utils import fragment_list_len, fragment_list_to_text
from prompt_toolkit.search import SearchDirection
from prompt_toolkit.utils import to_int, to_str
from .utils import explode_text_fragments
if TYPE_CHECKING:
from .controls import BufferControl, UIContent
__all__ = [
"Processor",
"TransformationInput",
"Transformation",
"DummyProcessor",
"HighlightSearchProcessor",
"HighlightIncrementalSearchProcessor",
"HighlightSelectionProcessor",
"PasswordProcessor",
"HighlightMatchingBracketProcessor",
"DisplayMultipleCursors",
"BeforeInput",
"ShowArg",
"AfterInput",
"AppendAutoSuggestion",
"ConditionalProcessor",
"ShowLeadingWhiteSpaceProcessor",
"ShowTrailingWhiteSpaceProcessor",
"TabsProcessor",
"ReverseSearchProcessor",
"DynamicProcessor",
"merge_processors",
]
class Processor(metaclass=ABCMeta):
"""
Manipulate the fragments for a given line in a
:class:`~prompt_toolkit.layout.controls.BufferControl`.
"""
@abstractmethod
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
"""
Apply transformation. Returns a :class:`.Transformation` instance.
:param transformation_input: :class:`.TransformationInput` object.
"""
return Transformation(transformation_input.fragments)
SourceToDisplay = Callable[[int], int]
DisplayToSource = Callable[[int], int]
class TransformationInput:
"""
:param buffer_control: :class:`.BufferControl` instance.
:param lineno: The number of the line to which we apply the processor.
:param source_to_display: A function that returns the position in the
`fragments` for any position in the source string. (This takes
previous processors into account.)
:param fragments: List of fragments that we can transform. (Received from the
previous processor.)
"""
def __init__(
self,
buffer_control: BufferControl,
document: Document,
lineno: int,
source_to_display: SourceToDisplay,
fragments: StyleAndTextTuples,
width: int,
height: int,
) -> None:
self.buffer_control = buffer_control
self.document = document
self.lineno = lineno
self.source_to_display = source_to_display
self.fragments = fragments
self.width = width
self.height = height
def unpack(
self,
) -> tuple[
BufferControl, Document, int, SourceToDisplay, StyleAndTextTuples, int, int
]:
return (
self.buffer_control,
self.document,
self.lineno,
self.source_to_display,
self.fragments,
self.width,
self.height,
)
class Transformation:
"""
Transformation result, as returned by :meth:`.Processor.apply_transformation`.
Important: Always make sure that the length of `document.text` is equal to
the length of all the text in `fragments`!
:param fragments: The transformed fragments. To be displayed, or to pass to
the next processor.
:param source_to_display: Cursor position transformation from original
string to transformed string.
:param display_to_source: Cursor position transformed from source string to
original string.
"""
def __init__(
self,
fragments: StyleAndTextTuples,
source_to_display: SourceToDisplay | None = None,
display_to_source: DisplayToSource | None = None,
) -> None:
self.fragments = fragments
self.source_to_display = source_to_display or (lambda i: i)
self.display_to_source = display_to_source or (lambda i: i)
class DummyProcessor(Processor):
"""
A `Processor` that doesn't do anything.
"""
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
return Transformation(transformation_input.fragments)
class HighlightSearchProcessor(Processor):
"""
Processor that highlights search matches in the document.
Note that this doesn't support multiline search matches yet.
The style classes 'search' and 'search.current' will be applied to the
content.
"""
_classname = "search"
_classname_current = "search.current"
def _get_search_text(self, buffer_control: BufferControl) -> str:
"""
The text we are searching for.
"""
return buffer_control.search_state.text
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
search_text = self._get_search_text(buffer_control)
searchmatch_fragment = f" class:{self._classname} "
searchmatch_current_fragment = f" class:{self._classname_current} "
if search_text and not get_app().is_done:
# For each search match, replace the style string.
line_text = fragment_list_to_text(fragments)
fragments = explode_text_fragments(fragments)
if buffer_control.search_state.ignore_case():
flags = re.IGNORECASE
else:
flags = re.RegexFlag(0)
# Get cursor column.
cursor_column: int | None
if document.cursor_position_row == lineno:
cursor_column = source_to_display(document.cursor_position_col)
else:
cursor_column = None
for match in re.finditer(re.escape(search_text), line_text, flags=flags):
if cursor_column is not None:
on_cursor = match.start() <= cursor_column < match.end()
else:
on_cursor = False
for i in range(match.start(), match.end()):
old_fragment, text, *_ = fragments[i]
if on_cursor:
fragments[i] = (
old_fragment + searchmatch_current_fragment,
fragments[i][1],
)
else:
fragments[i] = (
old_fragment + searchmatch_fragment,
fragments[i][1],
)
return Transformation(fragments)
class HighlightIncrementalSearchProcessor(HighlightSearchProcessor):
"""
Highlight the search terms that are used for highlighting the incremental
search. The style class 'incsearch' will be applied to the content.
Important: this requires the `preview_search=True` flag to be set for the
`BufferControl`. Otherwise, the cursor position won't be set to the search
match while searching, and nothing happens.
"""
_classname = "incsearch"
_classname_current = "incsearch.current"
def _get_search_text(self, buffer_control: BufferControl) -> str:
"""
The text we are searching for.
"""
# When the search buffer has focus, take that text.
search_buffer = buffer_control.search_buffer
if search_buffer is not None and search_buffer.text:
return search_buffer.text
return ""
class HighlightSelectionProcessor(Processor):
"""
Processor that highlights the selection in the document.
"""
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
selected_fragment = " class:selected "
# In case of selection, highlight all matches.
selection_at_line = document.selection_range_at_line(lineno)
if selection_at_line:
from_, to = selection_at_line
from_ = source_to_display(from_)
to = source_to_display(to)
fragments = explode_text_fragments(fragments)
if from_ == 0 and to == 0 and len(fragments) == 0:
# When this is an empty line, insert a space in order to
# visualize the selection.
return Transformation([(selected_fragment, " ")])
else:
for i in range(from_, to):
if i < len(fragments):
old_fragment, old_text, *_ = fragments[i]
fragments[i] = (old_fragment + selected_fragment, old_text)
elif i == len(fragments):
fragments.append((selected_fragment, " "))
return Transformation(fragments)
class PasswordProcessor(Processor):
"""
Processor that masks the input. (For passwords.)
:param char: (string) Character to be used. "*" by default.
"""
def __init__(self, char: str = "*") -> None:
self.char = char
def apply_transformation(self, ti: TransformationInput) -> Transformation:
fragments: StyleAndTextTuples = cast(
StyleAndTextTuples,
[
(style, self.char * len(text), *handler)
for style, text, *handler in ti.fragments
],
)
return Transformation(fragments)
class HighlightMatchingBracketProcessor(Processor):
"""
When the cursor is on or right after a bracket, it highlights the matching
bracket.
:param max_cursor_distance: Only highlight matching brackets when the
cursor is within this distance. (From inside a `Processor`, we can't
know which lines will be visible on the screen. But we also don't want
to scan the whole document for matching brackets on each key press, so
we limit to this value.)
"""
_closing_braces = "])}>"
def __init__(
self, chars: str = "[](){}<>", max_cursor_distance: int = 1000
) -> None:
self.chars = chars
self.max_cursor_distance = max_cursor_distance
self._positions_cache: SimpleCache[Hashable, list[tuple[int, int]]] = (
SimpleCache(maxsize=8)
)
def _get_positions_to_highlight(self, document: Document) -> list[tuple[int, int]]:
"""
Return a list of (row, col) tuples that need to be highlighted.
"""
pos: int | None
# Try for the character under the cursor.
if document.current_char and document.current_char in self.chars:
pos = document.find_matching_bracket_position(
start_pos=document.cursor_position - self.max_cursor_distance,
end_pos=document.cursor_position + self.max_cursor_distance,
)
# Try for the character before the cursor.
elif (
document.char_before_cursor
and document.char_before_cursor in self._closing_braces
and document.char_before_cursor in self.chars
):
document = Document(document.text, document.cursor_position - 1)
pos = document.find_matching_bracket_position(
start_pos=document.cursor_position - self.max_cursor_distance,
end_pos=document.cursor_position + self.max_cursor_distance,
)
else:
pos = None
# Return a list of (row, col) tuples that need to be highlighted.
if pos:
pos += document.cursor_position # pos is relative.
row, col = document.translate_index_to_position(pos)
return [
(row, col),
(document.cursor_position_row, document.cursor_position_col),
]
else:
return []
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
# When the application is in the 'done' state, don't highlight.
if get_app().is_done:
return Transformation(fragments)
# Get the highlight positions.
key = (get_app().render_counter, document.text, document.cursor_position)
positions = self._positions_cache.get(
key, lambda: self._get_positions_to_highlight(document)
)
# Apply if positions were found at this line.
if positions:
for row, col in positions:
if row == lineno:
col = source_to_display(col)
fragments = explode_text_fragments(fragments)
style, text, *_ = fragments[col]
if col == document.cursor_position_col:
style += " class:matching-bracket.cursor "
else:
style += " class:matching-bracket.other "
fragments[col] = (style, text)
return Transformation(fragments)
class DisplayMultipleCursors(Processor):
"""
When we're in Vi block insert mode, display all the cursors.
"""
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
buff = buffer_control.buffer
if vi_insert_multiple_mode():
cursor_positions = buff.multiple_cursor_positions
fragments = explode_text_fragments(fragments)
# If any cursor appears on the current line, highlight that.
start_pos = document.translate_row_col_to_index(lineno, 0)
end_pos = start_pos + len(document.lines[lineno])
fragment_suffix = " class:multiple-cursors"
for p in cursor_positions:
if start_pos <= p <= end_pos:
column = source_to_display(p - start_pos)
# Replace fragment.
try:
style, text, *_ = fragments[column]
except IndexError:
# Cursor needs to be displayed after the current text.
fragments.append((fragment_suffix, " "))
else:
style += fragment_suffix
fragments[column] = (style, text)
return Transformation(fragments)
else:
return Transformation(fragments)
class BeforeInput(Processor):
"""
Insert text before the input.
:param text: This can be either plain text or formatted text
(or a callable that returns any of those).
:param style: style to be applied to this prompt/prefix.
"""
def __init__(self, text: AnyFormattedText, style: str = "") -> None:
self.text = text
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
source_to_display: SourceToDisplay | None
display_to_source: DisplayToSource | None
if ti.lineno == 0:
# Get fragments.
fragments_before = to_formatted_text(self.text, self.style)
fragments = fragments_before + ti.fragments
shift_position = fragment_list_len(fragments_before)
source_to_display = lambda i: i + shift_position
display_to_source = lambda i: i - shift_position
else:
fragments = ti.fragments
source_to_display = None
display_to_source = None
return Transformation(
fragments,
source_to_display=source_to_display,
display_to_source=display_to_source,
)
def __repr__(self) -> str:
return f"BeforeInput({self.text!r}, {self.style!r})"
class ShowArg(BeforeInput):
"""
Display the 'arg' in front of the input.
This was used by the `PromptSession`, but now it uses the
`Window.get_line_prefix` function instead.
"""
def __init__(self) -> None:
super().__init__(self._get_text_fragments)
def _get_text_fragments(self) -> StyleAndTextTuples:
app = get_app()
if app.key_processor.arg is None:
return []
else:
arg = app.key_processor.arg
return [
("class:prompt.arg", "(arg: "),
("class:prompt.arg.text", str(arg)),
("class:prompt.arg", ") "),
]
def __repr__(self) -> str:
return "ShowArg()"
class AfterInput(Processor):
"""
Insert text after the input.
:param text: This can be either plain text or formatted text
(or a callable that returns any of those).
:param style: style to be applied to this prompt/prefix.
"""
def __init__(self, text: AnyFormattedText, style: str = "") -> None:
self.text = text
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
# Insert fragments after the last line.
if ti.lineno == ti.document.line_count - 1:
# Get fragments.
fragments_after = to_formatted_text(self.text, self.style)
return Transformation(fragments=ti.fragments + fragments_after)
else:
return Transformation(fragments=ti.fragments)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.text!r}, style={self.style!r})"
class AppendAutoSuggestion(Processor):
"""
Append the auto suggestion to the input.
(The user can then press the right arrow the insert the suggestion.)
"""
def __init__(self, style: str = "class:auto-suggestion") -> None:
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
# Insert fragments after the last line.
if ti.lineno == ti.document.line_count - 1:
buffer = ti.buffer_control.buffer
if buffer.suggestion and ti.document.is_cursor_at_the_end:
suggestion = buffer.suggestion.text
else:
suggestion = ""
return Transformation(fragments=ti.fragments + [(self.style, suggestion)])
else:
return Transformation(fragments=ti.fragments)
class ShowLeadingWhiteSpaceProcessor(Processor):
"""
Make leading whitespace visible.
:param get_char: Callable that returns one character.
"""
def __init__(
self,
get_char: Callable[[], str] | None = None,
style: str = "class:leading-whitespace",
) -> None:
def default_get_char() -> str:
if "\xb7".encode(get_app().output.encoding(), "replace") == b"?":
return "."
else:
return "\xb7"
self.style = style
self.get_char = get_char or default_get_char
def apply_transformation(self, ti: TransformationInput) -> Transformation:
fragments = ti.fragments
# Walk through all te fragments.
if fragments and fragment_list_to_text(fragments).startswith(" "):
t = (self.style, self.get_char())
fragments = explode_text_fragments(fragments)
for i in range(len(fragments)):
if fragments[i][1] == " ":
fragments[i] = t
else:
break
return Transformation(fragments)
class ShowTrailingWhiteSpaceProcessor(Processor):
"""
Make trailing whitespace visible.
:param get_char: Callable that returns one character.
"""
def __init__(
self,
get_char: Callable[[], str] | None = None,
style: str = "class:training-whitespace",
) -> None:
def default_get_char() -> str:
if "\xb7".encode(get_app().output.encoding(), "replace") == b"?":
return "."
else:
return "\xb7"
self.style = style
self.get_char = get_char or default_get_char
def apply_transformation(self, ti: TransformationInput) -> Transformation:
fragments = ti.fragments
if fragments and fragments[-1][1].endswith(" "):
t = (self.style, self.get_char())
fragments = explode_text_fragments(fragments)
# Walk backwards through all te fragments and replace whitespace.
for i in range(len(fragments) - 1, -1, -1):
char = fragments[i][1]
if char == " ":
fragments[i] = t
else:
break
return Transformation(fragments)
class TabsProcessor(Processor):
"""
Render tabs as spaces (instead of ^I) or make them visible (for instance,
by replacing them with dots.)
:param tabstop: Horizontal space taken by a tab. (`int` or callable that
returns an `int`).
:param char1: Character or callable that returns a character (text of
length one). This one is used for the first space taken by the tab.
:param char2: Like `char1`, but for the rest of the space.
"""
def __init__(
self,
tabstop: int | Callable[[], int] = 4,
char1: str | Callable[[], str] = "|",
char2: str | Callable[[], str] = "\u2508",
style: str = "class:tab",
) -> None:
self.char1 = char1
self.char2 = char2
self.tabstop = tabstop
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
tabstop = to_int(self.tabstop)
style = self.style
# Create separator for tabs.
separator1 = to_str(self.char1)
separator2 = to_str(self.char2)
# Transform fragments.
fragments = explode_text_fragments(ti.fragments)
position_mappings = {}
result_fragments: StyleAndTextTuples = []
pos = 0
for i, fragment_and_text in enumerate(fragments):
position_mappings[i] = pos
if fragment_and_text[1] == "\t":
# Calculate how many characters we have to insert.
count = tabstop - (pos % tabstop)
if count == 0:
count = tabstop
# Insert tab.
result_fragments.append((style, separator1))
result_fragments.append((style, separator2 * (count - 1)))
pos += count
else:
result_fragments.append(fragment_and_text)
pos += 1
position_mappings[len(fragments)] = pos
# Add `pos+1` to mapping, because the cursor can be right after the
# line as well.
position_mappings[len(fragments) + 1] = pos + 1
def source_to_display(from_position: int) -> int:
"Maps original cursor position to the new one."
return position_mappings[from_position]
def display_to_source(display_pos: int) -> int:
"Maps display cursor position to the original one."
position_mappings_reversed = {v: k for k, v in position_mappings.items()}
while display_pos >= 0:
try:
return position_mappings_reversed[display_pos]
except KeyError:
display_pos -= 1
return 0
return Transformation(
result_fragments,
source_to_display=source_to_display,
display_to_source=display_to_source,
)
class ReverseSearchProcessor(Processor):
"""
Process to display the "(reverse-i-search)`...`:..." stuff around
the search buffer.
Note: This processor is meant to be applied to the BufferControl that
contains the search buffer, it's not meant for the original input.
"""
_excluded_input_processors: list[type[Processor]] = [
HighlightSearchProcessor,
HighlightSelectionProcessor,
BeforeInput,
AfterInput,
]
def _get_main_buffer(self, buffer_control: BufferControl) -> BufferControl | None:
from prompt_toolkit.layout.controls import BufferControl
prev_control = get_app().layout.search_target_buffer_control
if (
isinstance(prev_control, BufferControl)
and prev_control.search_buffer_control == buffer_control
):
return prev_control
return None
def _content(
self, main_control: BufferControl, ti: TransformationInput
) -> UIContent:
from prompt_toolkit.layout.controls import BufferControl
# Emulate the BufferControl through which we are searching.
# For this we filter out some of the input processors.
excluded_processors = tuple(self._excluded_input_processors)
def filter_processor(item: Processor) -> Processor | None:
"""Filter processors from the main control that we want to disable
here. This returns either an accepted processor or None."""
# For a `_MergedProcessor`, check each individual processor, recursively.
if isinstance(item, _MergedProcessor):
accepted_processors = [filter_processor(p) for p in item.processors]
return merge_processors(
[p for p in accepted_processors if p is not None]
)
# For a `ConditionalProcessor`, check the body.
elif isinstance(item, ConditionalProcessor):
p = filter_processor(item.processor)
if p:
return ConditionalProcessor(p, item.filter)
# Otherwise, check the processor itself.
else:
if not isinstance(item, excluded_processors):
return item
return None
filtered_processor = filter_processor(
merge_processors(main_control.input_processors or [])
)
highlight_processor = HighlightIncrementalSearchProcessor()
if filtered_processor:
new_processors = [filtered_processor, highlight_processor]
else:
new_processors = [highlight_processor]
from .controls import SearchBufferControl
assert isinstance(ti.buffer_control, SearchBufferControl)
buffer_control = BufferControl(
buffer=main_control.buffer,
input_processors=new_processors,
include_default_input_processors=False,
lexer=main_control.lexer,
preview_search=True,
search_buffer_control=ti.buffer_control,
)
return buffer_control.create_content(ti.width, ti.height, preview_search=True)
def apply_transformation(self, ti: TransformationInput) -> Transformation:
from .controls import SearchBufferControl
assert isinstance(
ti.buffer_control, SearchBufferControl
), "`ReverseSearchProcessor` should be applied to a `SearchBufferControl` only."
source_to_display: SourceToDisplay | None
display_to_source: DisplayToSource | None
main_control = self._get_main_buffer(ti.buffer_control)
if ti.lineno == 0 and main_control:
content = self._content(main_control, ti)
# Get the line from the original document for this search.
line_fragments = content.get_line(content.cursor_position.y)
if main_control.search_state.direction == SearchDirection.FORWARD:
direction_text = "i-search"
else:
direction_text = "reverse-i-search"
fragments_before: StyleAndTextTuples = [
("class:prompt.search", "("),
("class:prompt.search", direction_text),
("class:prompt.search", ")`"),
]
fragments = (
fragments_before
+ [
("class:prompt.search.text", fragment_list_to_text(ti.fragments)),
("", "': "),
]
+ line_fragments
)
shift_position = fragment_list_len(fragments_before)
source_to_display = lambda i: i + shift_position
display_to_source = lambda i: i - shift_position
else:
source_to_display = None
display_to_source = None
fragments = ti.fragments
return Transformation(
fragments,
source_to_display=source_to_display,
display_to_source=display_to_source,
)
class ConditionalProcessor(Processor):
"""
Processor that applies another processor, according to a certain condition.
Example::
# Create a function that returns whether or not the processor should
# currently be applied.
def highlight_enabled():
return true_or_false
# Wrapped it in a `ConditionalProcessor` for usage in a `BufferControl`.
BufferControl(input_processors=[
ConditionalProcessor(HighlightSearchProcessor(),
Condition(highlight_enabled))])
:param processor: :class:`.Processor` instance.
:param filter: :class:`~prompt_toolkit.filters.Filter` instance.
"""
def __init__(self, processor: Processor, filter: FilterOrBool) -> None:
self.processor = processor
self.filter = to_filter(filter)
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
# Run processor when enabled.
if self.filter():
return self.processor.apply_transformation(transformation_input)
else:
return Transformation(transformation_input.fragments)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(processor={self.processor!r}, filter={self.filter!r})"
class DynamicProcessor(Processor):
"""
Processor class that dynamically returns any Processor.
:param get_processor: Callable that returns a :class:`.Processor` instance.
"""
def __init__(self, get_processor: Callable[[], Processor | None]) -> None:
self.get_processor = get_processor
def apply_transformation(self, ti: TransformationInput) -> Transformation:
processor = self.get_processor() or DummyProcessor()
return processor.apply_transformation(ti)
def merge_processors(processors: list[Processor]) -> Processor:
"""
Merge multiple `Processor` objects into one.
"""
if len(processors) == 0:
return DummyProcessor()
if len(processors) == 1:
return processors[0] # Nothing to merge.
return _MergedProcessor(processors)
class _MergedProcessor(Processor):
"""
Processor that groups multiple other `Processor` objects, but exposes an
API as if it is one `Processor`.
"""
def __init__(self, processors: list[Processor]):
self.processors = processors
def apply_transformation(self, ti: TransformationInput) -> Transformation:
source_to_display_functions = [ti.source_to_display]
display_to_source_functions = []
fragments = ti.fragments
def source_to_display(i: int) -> int:
"""Translate x position from the buffer to the x position in the
processor fragments list."""
for f in source_to_display_functions:
i = f(i)
return i
for p in self.processors:
transformation = p.apply_transformation(
TransformationInput(
ti.buffer_control,
ti.document,
ti.lineno,
source_to_display,
fragments,
ti.width,
ti.height,
)
)
fragments = transformation.fragments
display_to_source_functions.append(transformation.display_to_source)
source_to_display_functions.append(transformation.source_to_display)
def display_to_source(i: int) -> int:
for f in reversed(display_to_source_functions):
i = f(i)
return i
# In the case of a nested _MergedProcessor, each processor wants to
# receive a 'source_to_display' function (as part of the
# TransformationInput) that has everything in the chain before
# included, because it can be called as part of the
# `apply_transformation` function. However, this first
# `source_to_display` should not be part of the output that we are
# returning. (This is the most consistent with `display_to_source`.)
del source_to_display_functions[:1]
return Transformation(fragments, source_to_display, display_to_source)
|