Spaces:
Sleeping
Sleeping
first-space
/
first-space-venv
/lib
/python3.12
/site-packages
/prompt_toolkit
/completion
/fuzzy_completer.py
from __future__ import annotations | |
import re | |
from typing import Callable, Iterable, NamedTuple | |
from prompt_toolkit.document import Document | |
from prompt_toolkit.filters import FilterOrBool, to_filter | |
from prompt_toolkit.formatted_text import AnyFormattedText, StyleAndTextTuples | |
from .base import CompleteEvent, Completer, Completion | |
from .word_completer import WordCompleter | |
__all__ = [ | |
"FuzzyCompleter", | |
"FuzzyWordCompleter", | |
] | |
class FuzzyCompleter(Completer): | |
""" | |
Fuzzy completion. | |
This wraps any other completer and turns it into a fuzzy completer. | |
If the list of words is: ["leopard" , "gorilla", "dinosaur", "cat", "bee"] | |
Then trying to complete "oar" would yield "leopard" and "dinosaur", but not | |
the others, because they match the regular expression 'o.*a.*r'. | |
Similar, in another application "djm" could expand to "django_migrations". | |
The results are sorted by relevance, which is defined as the start position | |
and the length of the match. | |
Notice that this is not really a tool to work around spelling mistakes, | |
like what would be possible with difflib. The purpose is rather to have a | |
quicker or more intuitive way to filter the given completions, especially | |
when many completions have a common prefix. | |
Fuzzy algorithm is based on this post: | |
https://blog.amjith.com/fuzzyfinder-in-10-lines-of-python | |
:param completer: A :class:`~.Completer` instance. | |
:param WORD: When True, use WORD characters. | |
:param pattern: Regex pattern which selects the characters before the | |
cursor that are considered for the fuzzy matching. | |
:param enable_fuzzy: (bool or `Filter`) Enabled the fuzzy behavior. For | |
easily turning fuzzyness on or off according to a certain condition. | |
""" | |
def __init__( | |
self, | |
completer: Completer, | |
WORD: bool = False, | |
pattern: str | None = None, | |
enable_fuzzy: FilterOrBool = True, | |
) -> None: | |
assert pattern is None or pattern.startswith("^") | |
self.completer = completer | |
self.pattern = pattern | |
self.WORD = WORD | |
self.pattern = pattern | |
self.enable_fuzzy = to_filter(enable_fuzzy) | |
def get_completions( | |
self, document: Document, complete_event: CompleteEvent | |
) -> Iterable[Completion]: | |
if self.enable_fuzzy(): | |
return self._get_fuzzy_completions(document, complete_event) | |
else: | |
return self.completer.get_completions(document, complete_event) | |
def _get_pattern(self) -> str: | |
if self.pattern: | |
return self.pattern | |
if self.WORD: | |
return r"[^\s]+" | |
return "^[a-zA-Z0-9_]*" | |
def _get_fuzzy_completions( | |
self, document: Document, complete_event: CompleteEvent | |
) -> Iterable[Completion]: | |
word_before_cursor = document.get_word_before_cursor( | |
pattern=re.compile(self._get_pattern()) | |
) | |
# Get completions | |
document2 = Document( | |
text=document.text[: document.cursor_position - len(word_before_cursor)], | |
cursor_position=document.cursor_position - len(word_before_cursor), | |
) | |
inner_completions = list( | |
self.completer.get_completions(document2, complete_event) | |
) | |
fuzzy_matches: list[_FuzzyMatch] = [] | |
if word_before_cursor == "": | |
# If word before the cursor is an empty string, consider all | |
# completions, without filtering everything with an empty regex | |
# pattern. | |
fuzzy_matches = [_FuzzyMatch(0, 0, compl) for compl in inner_completions] | |
else: | |
pat = ".*?".join(map(re.escape, word_before_cursor)) | |
pat = f"(?=({pat}))" # lookahead regex to manage overlapping matches | |
regex = re.compile(pat, re.IGNORECASE) | |
for compl in inner_completions: | |
matches = list(regex.finditer(compl.text)) | |
if matches: | |
# Prefer the match, closest to the left, then shortest. | |
best = min(matches, key=lambda m: (m.start(), len(m.group(1)))) | |
fuzzy_matches.append( | |
_FuzzyMatch(len(best.group(1)), best.start(), compl) | |
) | |
def sort_key(fuzzy_match: _FuzzyMatch) -> tuple[int, int]: | |
"Sort by start position, then by the length of the match." | |
return fuzzy_match.start_pos, fuzzy_match.match_length | |
fuzzy_matches = sorted(fuzzy_matches, key=sort_key) | |
for match in fuzzy_matches: | |
# Include these completions, but set the correct `display` | |
# attribute and `start_position`. | |
yield Completion( | |
text=match.completion.text, | |
start_position=match.completion.start_position | |
- len(word_before_cursor), | |
# We access to private `_display_meta` attribute, because that one is lazy. | |
display_meta=match.completion._display_meta, | |
display=self._get_display(match, word_before_cursor), | |
style=match.completion.style, | |
) | |
def _get_display( | |
self, fuzzy_match: _FuzzyMatch, word_before_cursor: str | |
) -> AnyFormattedText: | |
""" | |
Generate formatted text for the display label. | |
""" | |
def get_display() -> AnyFormattedText: | |
m = fuzzy_match | |
word = m.completion.text | |
if m.match_length == 0: | |
# No highlighting when we have zero length matches (no input text). | |
# In this case, use the original display text (which can include | |
# additional styling or characters). | |
return m.completion.display | |
result: StyleAndTextTuples = [] | |
# Text before match. | |
result.append(("class:fuzzymatch.outside", word[: m.start_pos])) | |
# The match itself. | |
characters = list(word_before_cursor) | |
for c in word[m.start_pos : m.start_pos + m.match_length]: | |
classname = "class:fuzzymatch.inside" | |
if characters and c.lower() == characters[0].lower(): | |
classname += ".character" | |
del characters[0] | |
result.append((classname, c)) | |
# Text after match. | |
result.append( | |
("class:fuzzymatch.outside", word[m.start_pos + m.match_length :]) | |
) | |
return result | |
return get_display() | |
class FuzzyWordCompleter(Completer): | |
""" | |
Fuzzy completion on a list of words. | |
(This is basically a `WordCompleter` wrapped in a `FuzzyCompleter`.) | |
:param words: List of words or callable that returns a list of words. | |
:param meta_dict: Optional dict mapping words to their meta-information. | |
:param WORD: When True, use WORD characters. | |
""" | |
def __init__( | |
self, | |
words: list[str] | Callable[[], list[str]], | |
meta_dict: dict[str, str] | None = None, | |
WORD: bool = False, | |
) -> None: | |
self.words = words | |
self.meta_dict = meta_dict or {} | |
self.WORD = WORD | |
self.word_completer = WordCompleter( | |
words=self.words, WORD=self.WORD, meta_dict=self.meta_dict | |
) | |
self.fuzzy_completer = FuzzyCompleter(self.word_completer, WORD=self.WORD) | |
def get_completions( | |
self, document: Document, complete_event: CompleteEvent | |
) -> Iterable[Completion]: | |
return self.fuzzy_completer.get_completions(document, complete_event) | |
class _FuzzyMatch(NamedTuple): | |
match_length: int | |
start_pos: int | |
completion: Completion | |