Spaces:
Sleeping
Sleeping
first-space
/
first-space-venv
/lib
/python3.12
/site-packages
/prompt_toolkit
/completion
/nested.py
""" | |
Nestedcompleter for completion of hierarchical data structures. | |
""" | |
from __future__ import annotations | |
from typing import Any, Iterable, Mapping, Set, Union | |
from prompt_toolkit.completion import CompleteEvent, Completer, Completion | |
from prompt_toolkit.completion.word_completer import WordCompleter | |
from prompt_toolkit.document import Document | |
__all__ = ["NestedCompleter"] | |
# NestedDict = Mapping[str, Union['NestedDict', Set[str], None, Completer]] | |
NestedDict = Mapping[str, Union[Any, Set[str], None, Completer]] | |
class NestedCompleter(Completer): | |
""" | |
Completer which wraps around several other completers, and calls any the | |
one that corresponds with the first word of the input. | |
By combining multiple `NestedCompleter` instances, we can achieve multiple | |
hierarchical levels of autocompletion. This is useful when `WordCompleter` | |
is not sufficient. | |
If you need multiple levels, check out the `from_nested_dict` classmethod. | |
""" | |
def __init__( | |
self, options: dict[str, Completer | None], ignore_case: bool = True | |
) -> None: | |
self.options = options | |
self.ignore_case = ignore_case | |
def __repr__(self) -> str: | |
return f"NestedCompleter({self.options!r}, ignore_case={self.ignore_case!r})" | |
def from_nested_dict(cls, data: NestedDict) -> NestedCompleter: | |
""" | |
Create a `NestedCompleter`, starting from a nested dictionary data | |
structure, like this: | |
.. code:: | |
data = { | |
'show': { | |
'version': None, | |
'interfaces': None, | |
'clock': None, | |
'ip': {'interface': {'brief'}} | |
}, | |
'exit': None | |
'enable': None | |
} | |
The value should be `None` if there is no further completion at some | |
point. If all values in the dictionary are None, it is also possible to | |
use a set instead. | |
Values in this data structure can be a completers as well. | |
""" | |
options: dict[str, Completer | None] = {} | |
for key, value in data.items(): | |
if isinstance(value, Completer): | |
options[key] = value | |
elif isinstance(value, dict): | |
options[key] = cls.from_nested_dict(value) | |
elif isinstance(value, set): | |
options[key] = cls.from_nested_dict({item: None for item in value}) | |
else: | |
assert value is None | |
options[key] = None | |
return cls(options) | |
def get_completions( | |
self, document: Document, complete_event: CompleteEvent | |
) -> Iterable[Completion]: | |
# Split document. | |
text = document.text_before_cursor.lstrip() | |
stripped_len = len(document.text_before_cursor) - len(text) | |
# If there is a space, check for the first term, and use a | |
# subcompleter. | |
if " " in text: | |
first_term = text.split()[0] | |
completer = self.options.get(first_term) | |
# If we have a sub completer, use this for the completions. | |
if completer is not None: | |
remaining_text = text[len(first_term) :].lstrip() | |
move_cursor = len(text) - len(remaining_text) + stripped_len | |
new_document = Document( | |
remaining_text, | |
cursor_position=document.cursor_position - move_cursor, | |
) | |
yield from completer.get_completions(new_document, complete_event) | |
# No space in the input: behave exactly like `WordCompleter`. | |
else: | |
completer = WordCompleter( | |
list(self.options.keys()), ignore_case=self.ignore_case | |
) | |
yield from completer.get_completions(document, complete_event) | |