import gradio as gr
import os
import torch

from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict

class_names = ["pizza", "steak", "sushi"]

effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)

effnetb2.load_state_dict(
    torch.load(
        f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
        map_location=torch.device("cpu")
    )
)

def predict(img) -> Tuple[Dict, float]:
  start_time = timer()
  img = effnetb2_transforms(img).unsqueeze(0)
  effnetb2.eval()
  with torch.inference_mode():
    pred_probs = torch.softmax(effnetb2(img), dim=1)
  pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
  pred_time = round(timer() - start_time, 5)
  return pred_labels_and_probs, pred_time

title = "FoodVision Mini 🍕🥩🍣"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."

example_list = [["examples/" + example] for example in os.listdir("examples")]

demo = gr.Interface(fn=predict,
                    inputs=gr.Image(type="pil"),
                    outputs=[gr.Label(num_top_classes=3, label="Predictions"),
                             gr.Number(label="Prediction time (s)")],
                    examples=example_list, 
                    title=title,
                    description=description,
                    article=article)

demo.launch()