radub23
commited on
Commit
·
eceb545
1
Parent(s):
f438e63
Simplify tensor handling with more robust type checking
Browse files
app.py
CHANGED
|
@@ -46,66 +46,55 @@ def detect_warning_lamp(image, history: list[tuple[str, str]], system_message):
|
|
| 46 |
history.append((None, "Please upload an image first."))
|
| 47 |
return history
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
try:
|
| 55 |
-
# Convert PIL image to FastAI compatible format
|
| 56 |
-
img = PILImage(image)
|
| 57 |
-
|
| 58 |
-
# Get model prediction
|
| 59 |
-
pred_class, pred_idx, probs = learn_inf.predict(img)
|
| 60 |
-
|
| 61 |
-
# Try different approaches to handle tensor conversion
|
| 62 |
-
try:
|
| 63 |
-
# First approach - direct conversion
|
| 64 |
-
confidence = float(probs[pred_idx])
|
| 65 |
-
except Exception as e1:
|
| 66 |
-
print(f"First conversion approach failed: {e1}")
|
| 67 |
-
try:
|
| 68 |
-
# Second approach - convert index first
|
| 69 |
-
idx = int(pred_idx)
|
| 70 |
-
confidence = float(probs[idx])
|
| 71 |
-
except Exception as e2:
|
| 72 |
-
print(f"Second conversion approach failed: {e2}")
|
| 73 |
-
# Third approach - use item() method if available
|
| 74 |
-
if hasattr(probs[pred_idx], 'item'):
|
| 75 |
-
confidence = probs[pred_idx].item()
|
| 76 |
-
else:
|
| 77 |
-
# Last resort - use the max probability
|
| 78 |
-
confidence = float(max(probs))
|
| 79 |
-
|
| 80 |
-
# Format the prediction results
|
| 81 |
-
response = f"Detected Warning Lamp: {pred_class}\nConfidence: {confidence:.2%}"
|
| 82 |
-
|
| 83 |
-
# Add probabilities for all classes
|
| 84 |
response += "\n\nProbabilities for all classes:"
|
| 85 |
-
for i,
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
| 88 |
response += f"\n- {cls}: {prob_value:.2%}"
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
response += f"\n- {cls}: N/A"
|
| 92 |
-
|
| 93 |
-
# Update chat history
|
| 94 |
-
history.append((None, response))
|
| 95 |
-
return history
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
error_msg = f"Error processing image after {max_retries} attempts: {str(e)}"
|
| 106 |
-
print(f"All retries failed: {error_msg}")
|
| 107 |
-
history.append((None, error_msg))
|
| 108 |
-
return history
|
| 109 |
|
| 110 |
# Create a custom interface with image upload
|
| 111 |
with gr.Blocks(title="Warning Lamp Detector", theme=gr.themes.Soft()) as demo:
|
|
|
|
| 46 |
history.append((None, "Please upload an image first."))
|
| 47 |
return history
|
| 48 |
|
| 49 |
+
try:
|
| 50 |
+
# Convert PIL image to FastAI compatible format
|
| 51 |
+
img = PILImage(image)
|
| 52 |
+
|
| 53 |
+
# Get model prediction
|
| 54 |
+
pred_class, pred_idx, probs = learn_inf.predict(img)
|
| 55 |
+
|
| 56 |
+
# Convert tensors to Python types safely
|
| 57 |
+
pred_class_str = str(pred_class) # Convert class name to string
|
| 58 |
+
|
| 59 |
+
# Format the prediction results
|
| 60 |
+
response = f"Detected Warning Lamp: {pred_class_str}"
|
| 61 |
+
|
| 62 |
+
# Try to add confidence if possible
|
| 63 |
+
try:
|
| 64 |
+
# Get the index as an integer
|
| 65 |
+
if isinstance(pred_idx, torch.Tensor):
|
| 66 |
+
idx = pred_idx.item()
|
| 67 |
+
else:
|
| 68 |
+
idx = int(pred_idx)
|
| 69 |
+
|
| 70 |
+
# Get the confidence value
|
| 71 |
+
if isinstance(probs, torch.Tensor) and idx < len(probs):
|
| 72 |
+
confidence = probs[idx].item()
|
| 73 |
+
response += f"\nConfidence: {confidence:.2%}"
|
| 74 |
+
except Exception as conf_error:
|
| 75 |
+
print(f"Could not calculate confidence: {conf_error}")
|
| 76 |
+
|
| 77 |
+
# Add probabilities for all classes if possible
|
| 78 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
response += "\n\nProbabilities for all classes:"
|
| 80 |
+
for i, cls in enumerate(learn_inf.dls.vocab):
|
| 81 |
+
if i < len(probs):
|
| 82 |
+
if isinstance(probs, torch.Tensor):
|
| 83 |
+
prob_value = probs[i].item()
|
| 84 |
+
else:
|
| 85 |
+
prob_value = float(probs[i])
|
| 86 |
response += f"\n- {cls}: {prob_value:.2%}"
|
| 87 |
+
except Exception as prob_error:
|
| 88 |
+
print(f"Could not list all probabilities: {prob_error}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
# Update chat history
|
| 91 |
+
history.append((None, response))
|
| 92 |
+
return history
|
| 93 |
+
except Exception as e:
|
| 94 |
+
error_msg = f"Error processing image: {str(e)}"
|
| 95 |
+
print(f"Exception in detect_warning_lamp: {e}")
|
| 96 |
+
history.append((None, error_msg))
|
| 97 |
+
return history
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# Create a custom interface with image upload
|
| 100 |
with gr.Blocks(title="Warning Lamp Detector", theme=gr.themes.Soft()) as demo:
|