File size: 3,500 Bytes
72844d2
f7d0046
85ededf
 
 
 
43d3728
85ededf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3fa85
85ededf
7fdc734
f7d0046
 
85ededf
 
 
 
 
 
f7d0046
85ededf
f7d0046
510b5a1
f7d0046
 
 
510b5a1
85ededf
 
 
 
3bdd0ba
 
f4ac0dc
85ededf
 
 
1523989
 
85ededf
75ecf93
 
85ededf
75ecf93
85ededf
 
 
 
1eba4a4
85ededf
 
 
 
 
 
 
 
 
 
 
 
 
 
1eba4a4
85ededf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import spaces
from detoxify import Detoxify
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import gradio as gr
from threading import Thread
device = "cpu"
if torch.cuda.is_available():
    device = "cuda"
if torch.backends.mps.is_available():
    device = "mps"

theme = gr.themes.Base(
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)

tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    "microsoft/phi-2",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    trust_remote_code=True,
).to(device)
@spaces.GPU(enable_queue=True)
def generate_text(text, temperature, maxLen):
    mdl = Detoxify('original', device='cuda')
    if mdl.predict(text)['toxicity'] > 0.7:
        raise gr.Error("Sorry, our systems may have detected toxic content. Please try a different input.")
    inputs = tokenizer([text], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=maxLen, temperature=temperature)
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    t = ""
    toks = 0
    for out in streamer:
        toks += 1
        if toks >= 3:
            toks = 0
            if mdl.predict(t)['toxicity'] > 0.7:
                raise gr.Error("Sorry, our systems may have detected toxic content. Please try a different input.")
                break
        t += out
        yield t
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
    gr.Markdown("""
# (Unofficial) Demo of Microsoft's Phi-2 on GPU

Not affiliated with Microsoft!

This model is licensed under the [Microsoft Research License](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE). You may only use it for non-commercial purposes.

Note: for longer generation (>512), keep clicking "Generate!" The demo is currently limited to 512 demos per generation to ensure all users have access to this service. Please note that once you start generating, you cannot stop generating until the generation is done.

By [mrfakename](https://twitter.com/realmrfakename). Inspired by [@randomblock1's demo](https://huggingface.co/spaces/randomblock1/phi-2).

Duplicate this Space to skip the wait!
""".strip())
    gr.DuplicateButton()
    text = gr.Textbox(label="Prompt", lines=10, interactive=True, placeholder="Write a detailed analogy between mathematics and a lighthouse.")
    temp = gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, value=0.7)
    maxlen = gr.Slider(label="Max Length", minimum=4, maximum=512, value=75)
    go = gr.Button("Generate", variant="primary")
    go.click(generate_text, inputs=[text, temp, maxlen], outputs=[text], concurrency_limit=2)
    examples = gr.Examples(
        [
            ['Write a detailed analogy between mathematics and a lighthouse.', 0.7, 75],
            ['Instruct: Write a detailed analogy between mathematics and a lighthouse.\nOutput:', 0.7, 75],
            ['Alice: I don\'t know why, I\'m struggling to maintain focus while studying. Any suggestions?\n\nBob: ', 0.6, 150],
            ['''def print_prime(n):
   """
   Print all primes between 1 and n
   """\n''', 0.2, 100],
        ],
        [text, temp, maxlen]
    )

if __name__ == "__main__":
    demo.queue().launch(show_api=False)