raffaelsiregar commited on
Commit
49cd5f4
·
verified ·
1 Parent(s): 19be4d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -46
app.py CHANGED
@@ -136,52 +136,29 @@ def decode_emotion_prediction(prediction_tensor, label_encoder):
136
 
137
  return predicted_emotion, confidence
138
 
139
- # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
140
- # model = model.to(device)
141
-
142
  def predict(wave):
143
- wave = preprocess_single_audio(wave)
144
- le = LabelEncoder()
145
- le.classes_ = np.array(['Angry', 'Disgusting', 'Fear', 'Happy', 'Neutral', 'Sad'])
146
- wave = wave.unsqueeze(0)
147
- with torch.no_grad():
148
- prediction = model(wave)
149
- predicted_emotion, confidence = decode_emotion_prediction(prediction, le)
150
- return f"Predicted emotion: {predicted_emotion} (Confidence: {confidence:.2f})"
 
 
 
 
 
151
 
152
  # Gradio Interface
153
- # iface = gr.Interface(
154
- # fn=predict,
155
- # inputs=gr.Audio(sources="microphone", type="filepath"),
156
- # outputs="text",
157
- # live=True,
158
- # title="Speech Emotion Recognition",
159
- # description="Record your voice and get the predicted emotion."
160
- # )
161
-
162
- with gr.Blocks(theme=gr.themes.Soft()) as demo:
163
- gr.Markdown("# Emotion Recognition App")
164
- gr.Markdown("Upload an audio file or record directly to get a prediction")
165
-
166
- with gr.Row():
167
- audio_input = gr.Audio(sources="microphone", type="filepath")
168
- audio_output = gr.Audio(label="Processed Audio")
169
-
170
- with gr.Row():
171
- submit_btn = gr.Button("Get Prediction", variant="primary")
172
- clear_btn = gr.Button("Clear")
173
-
174
- prediction_output = gr.Textbox(label="Prediction")
175
-
176
- submit_btn.click(
177
- fn=predict,
178
- inputs=[audio_input],
179
- outputs=[audio_output, prediction_output]
180
- )
181
-
182
- clear_btn.click(
183
- fn=lambda: (None, None, ""),
184
- outputs=[audio_input, audio_output, prediction_output]
185
- )
186
-
187
- demo.launch()
 
136
 
137
  return predicted_emotion, confidence
138
 
 
 
 
139
  def predict(wave):
140
+ if wave is None or wave == '':
141
+ return "No audio input provided."
142
+ try:
143
+ wave = preprocess_single_audio(wave)
144
+ le = LabelEncoder()
145
+ le.classes_ = np.array(['Angry', 'Disgusting', 'Fear', 'Happy', 'Neutral', 'Sad'])
146
+ wave = wave.unsqueeze(0)
147
+ with torch.no_grad():
148
+ prediction = model(wave)
149
+ predicted_emotion, confidence = decode_emotion_prediction(prediction, le)
150
+ return f"Predicted emotion: {predicted_emotion} (Confidence: {confidence:.2f})"
151
+ except Exception as e:
152
+ return f'Error in processing audio: {str(e)}'
153
 
154
  # Gradio Interface
155
+ iface = gr.Interface(
156
+ fn=predict,
157
+ inputs=gr.Audio(sources="microphone", type="filepath"),
158
+ outputs="text",
159
+ live=True,
160
+ title="Speech Emotion Recognition",
161
+ description="Record your voice and get the predicted emotion."
162
+ )
163
+
164
+ iface.launch()