File size: 1,264 Bytes
84b71aa
 
 
f1c573d
0b975a5
84b71aa
f1c573d
4a14dde
f1c573d
 
 
84b71aa
4a14dde
f1c573d
4a14dde
 
 
 
f1c573d
 
 
 
 
 
 
 
84b71aa
f1c573d
 
 
84b71aa
 
f1c573d
84b71aa
f1c573d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the inference client
client = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")

def generate_response(prompt, max_length=512, temperature=0.7):
    """Generate a response from the model and check metadata."""
    response = client.text_generation(
        prompt,
        max_new_tokens=max_length,
        temperature=temperature,
        details=True  # This may provide extra model info
    )
    print(f"Response Metadata: {response}")  # Check if model details are in the response
    return response["generated_text"] if isinstance(response, dict) else response

print(f"Using model: {client.model_id}")

# Define the Gradio interface
iface = gr.Interface(
    fn=generate_response,
    inputs=[
        gr.Textbox(label="Input Prompt"),
        gr.Slider(minimum=50, maximum=1024, value=512, step=50, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature"),
    ],
    outputs=gr.Textbox(label="Generated Response"),
    title="Nous Hermes 2 Mixtral AI Chatbot",
    description="An interactive chatbot powered by Nous Hermes 2 Mixtral 8x7B DPO.",
)

# Launch the app
if __name__ == "__main__":
    iface.launch()