import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Specify the model name from Hugging Face Hub model_name = "openbmb/MiniCPM-V" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(prompt): # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt") # Generate output tokens outputs = model.generate(**inputs, max_new_tokens=50) # Decode tokens to text return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create a simple Gradio interface iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="MiniCPM-V Demo") iface.launch()