raghuv-aditya's picture
Create app.py
8f087b7 verified
raw
history blame
1.7 kB
import gradio as gr
from scraper import scrape_courses_json
from text_processing import generate_text
from embedding_storage import process_safety_with_chroma
from qa_chatbot import create_chatbot, ask_question
from config import BASE_URL
def main(query):
"""
Main function to scrape courses, process embeddings, and retrieve answers.
Args:
query (str): User's query for course recommendation.
Returns:
str: Response from the chatbot with a recommended course.
"""
courses_data = scrape_courses_json(BASE_URL, num_pages=1)
course_text = generate_text(courses_data)
vector_store = process_safety_with_chroma(course_text)
qa_system = create_chatbot(vector_store)
prompt = "Suggest me the best course for " + query + " in a structured format with a link."
return ask_question(qa_system, prompt)
# Gradio interface
with gr.Blocks(css="""
.container {max-width: 800px; margin: auto; text-align: center;}
button {background-color: orange !important; color: white !important;}
#input_text, #output_text {margin-bottom: 20px;}
""") as demo:
gr.Markdown("# πŸŽ“ Course Recommendation Chatbot\nWelcome! Enter your area of interest to receive a course recommendation.")
input_text = gr.Textbox(label="Ask your question about courses", placeholder="e.g., Best courses for machine learning", elem_id="input_text")
output_text = gr.Textbox(label="Course Information", placeholder="Your course recommendation will appear here...", elem_id="output_text")
submit_button = gr.Button("Get Recommendation", elem_id="submit_button")
submit_button.click(fn=main, inputs=input_text, outputs=output_text)
demo.launch(share=True)