Spaces:
Sleeping
Sleeping
raghuv-aditya
commited on
Create chatbot.py
Browse files- chatbot.py +48 -0
chatbot.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
chatbot.py
|
3 |
+
|
4 |
+
Module to create a chatbot using RetrievalQA and the ChromaDB embeddings.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from langchain_openai import OpenAI
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
|
10 |
+
def create_chatbot(vector_store):
|
11 |
+
"""Creates a chatbot that retrieves and answers questions.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
vector_store (Chroma): Vector store with document embeddings.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
RetrievalQA: A retrieval-based QA system.
|
18 |
+
"""
|
19 |
+
llm = OpenAI(temperature=0.5)
|
20 |
+
retriever = vector_store.as_retriever(search_type="mmr", k=3)
|
21 |
+
|
22 |
+
qa = RetrievalQA.from_chain_type(
|
23 |
+
llm=llm,
|
24 |
+
chain_type="stuff",
|
25 |
+
retriever=retriever,
|
26 |
+
return_source_documents=True
|
27 |
+
)
|
28 |
+
return qa
|
29 |
+
|
30 |
+
def ask_question(qa, query):
|
31 |
+
"""Queries the chatbot and returns the answer.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
qa (RetrievalQA): The QA system.
|
35 |
+
query (str): The user query.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
str: The answer with source information if available.
|
39 |
+
"""
|
40 |
+
try:
|
41 |
+
response = qa.invoke({"query": query})
|
42 |
+
answer = response.get('result', 'No answer found.')
|
43 |
+
sources = response.get('source_documents', [])
|
44 |
+
|
45 |
+
return f"Answer: {answer}\n"
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error processing query '{query}': {e}")
|
48 |
+
return f"Error: {e}"
|