""" chatbot.py Module to create a chatbot using RetrievalQA and the ChromaDB embeddings. """ from langchain_openai import OpenAI from langchain.chains import RetrievalQA def create_chatbot(vector_store): """Creates a chatbot that retrieves and answers questions. Args: vector_store (Chroma): Vector store with document embeddings. Returns: RetrievalQA: A retrieval-based QA system. """ llm = OpenAI(model="4o mini", temperature=0.5) retriever = vector_store.as_retriever(search_type="mmr", k=3) qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) return qa def ask_question(qa, query): """Queries the chatbot and returns the answer. Args: qa (RetrievalQA): The QA system. query (str): The user query. Returns: str: The answer with source information if available. """ try: response = qa.invoke({"query": query}) answer = response.get('result', 'No answer found.') sources = response.get('source_documents', []) return f"Answer: {answer}\n" except Exception as e: print(f"Error processing query '{query}': {e}") return f"Error: {e}"