import re import pandas as pd from modules.scraper import get_raw_data, get_raw_data_sheets from modules.embedding_storage import process_safety_with_chroma from modules.qa_chatbot import create_chatbot, ask_question def extract_column_name(query_template): """ Extract the column name from the query template enclosed in curly braces. """ match = re.search(r"\{(.*?)\}", query_template) if not match: raise ValueError("No placeholder found in the query template. Ensure the query contains a placeholder like {column_name}.") return match.group(1) def process_query_and_update_csv(file_path, query_template): """ Processes the queries based on the specified column, updates the CSV file, and adds an 'Answer' column with responses. """ column_name = extract_column_name(query_template) df = pd.read_csv(file_path) if column_name not in df.columns: raise ValueError(f"The specified column '{column_name}' is missing in the provided CSV file.") if "Answer" not in df.columns: df["Answer"] = "" for index, row in df.iterrows(): value = row[column_name] query = query_template.replace(f"{{{column_name}}}", str(value)) # Process the query using provided functions raw_data = get_raw_data(file_path, query) print(raw_data) vector_store = process_safety_with_chroma(raw_data) qa_system = create_chatbot(vector_store) prompt = f"Give me the exact answer for this below query '{query}' in a structured format with a link from the content provided only." answer = ask_question(qa_system, prompt) df.at[index, "Answer"] = answer df.to_csv(file_path, index=False) return df def process_query_and_update_sheets(file_path, df, query_template): """ Processes the queries based on the specified column, updates the CSV file, and adds an 'Answer' column with responses. """ column_name = extract_column_name(query_template) # df = pd.read_csv(file_path) if column_name not in df.columns: raise ValueError(f"The specified column '{column_name}' is missing in the provided CSV file.") if "Answer" not in df.columns: df["Answer"] = "" for index, row in df.iterrows(): value = row[column_name] query = query_template.replace(f"{{{column_name}}}", str(value)) # print( "Value : ", value, "Query : ", query) # Process the query using provided functions raw_data = get_raw_data_sheets(query) vector_store = process_safety_with_chroma(raw_data) qa_system = create_chatbot(vector_store) prompt = f"Give me the exact answer for this below query '{query}' in a structured format with a link from the content provided only." answer = ask_question(qa_system, prompt) df.at[index, "Answer"] = answer print("ddddddd") print(df) # df.to_csv(file_path, index=False) return df