fix: using pipeline
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import torch
|
6 |
|
7 |
# Inisialisasi model dan tokenizer
|
@@ -26,17 +26,18 @@ class TextInput(BaseModel):
|
|
26 |
|
27 |
# Fungsi untuk analisis sentimen
|
28 |
def predict_sentiment(text):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
# Endpoint untuk analisis sentimen
|
42 |
@app.post("/predict")
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
5 |
import torch
|
6 |
|
7 |
# Inisialisasi model dan tokenizer
|
|
|
26 |
|
27 |
# Fungsi untuk analisis sentimen
|
28 |
def predict_sentiment(text):
|
29 |
+
nlp = pipeline(
|
30 |
+
"sentiment-analysis",
|
31 |
+
model=model_name,
|
32 |
+
tokenizer=model_name
|
33 |
+
)
|
34 |
+
|
35 |
+
result = nlp(text)[0]
|
36 |
+
sentiment = result['label']
|
37 |
+
confidence = result['score']
|
38 |
+
return sentiment, confidence
|
39 |
+
|
40 |
+
|
41 |
|
42 |
# Endpoint untuk analisis sentimen
|
43 |
@app.post("/predict")
|