ragilbuaj commited on
Commit
112bea6
·
1 Parent(s): a5cd817

fix: using pipeline

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -1,7 +1,7 @@
1
  from fastapi import FastAPI
2
  from fastapi.middleware.cors import CORSMiddleware
3
  from pydantic import BaseModel
4
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
  import torch
6
 
7
  # Inisialisasi model dan tokenizer
@@ -26,17 +26,18 @@ class TextInput(BaseModel):
26
 
27
  # Fungsi untuk analisis sentimen
28
  def predict_sentiment(text):
29
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
30
- outputs = model(**inputs)
31
- scores = outputs.logits[0].detach().numpy()
32
- predictions = torch.nn.functional.softmax(torch.tensor(scores), dim=0)
33
- sentiment = torch.argmax(predictions).item()
34
-
35
- # Map sentiment to label
36
- labels = ["positive", "negative", "neutral"]
37
- sentiment_label = labels[sentiment]
38
-
39
- return sentiment_label, predictions[sentiment].item()
 
40
 
41
  # Endpoint untuk analisis sentimen
42
  @app.post("/predict")
 
1
  from fastapi import FastAPI
2
  from fastapi.middleware.cors import CORSMiddleware
3
  from pydantic import BaseModel
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
5
  import torch
6
 
7
  # Inisialisasi model dan tokenizer
 
26
 
27
  # Fungsi untuk analisis sentimen
28
  def predict_sentiment(text):
29
+ nlp = pipeline(
30
+ "sentiment-analysis",
31
+ model=model_name,
32
+ tokenizer=model_name
33
+ )
34
+
35
+ result = nlp(text)[0]
36
+ sentiment = result['label']
37
+ confidence = result['score']
38
+ return sentiment, confidence
39
+
40
+
41
 
42
  # Endpoint untuk analisis sentimen
43
  @app.post("/predict")