from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import os # Set the cache directory to a writable location os.environ['TRANSFORMERS_CACHE'] = '/app/.cache' os.environ['HF_HOME'] = '/app/.cache' # Inisialisasi model dan tokenizer model_name = "w11wo/indonesian-roberta-base-sentiment-classifier" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Inisialisasi FastAPI app = FastAPI() # Model request body class TextInput(BaseModel): text: str # Fungsi untuk analisis sentimen def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) scores = outputs.logits[0].detach().numpy() predictions = torch.nn.functional.softmax(torch.tensor(scores), dim=0) sentiment = torch.argmax(predictions).item() return sentiment, predictions[sentiment].item() # Endpoint untuk analisis sentimen @app.post("/predict") async def predict(input: TextInput): sentiment, confidence = predict_sentiment(input.text) return {"sentiment": sentiment, "confidence": confidence} # Endpoint root @app.get("/") async def read_root(): return {"message": "Sentiment Analysis API"}