from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Inisialisasi model dan tokenizer model_name = "w11wo/indonesian-roberta-base-sentiment-classifier" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Inisialisasi FastAPI app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # Bisa disesuaikan dengan daftar asal yang diizinkan allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Model request body class TextInput(BaseModel): text: str # Fungsi untuk analisis sentimen def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) scores = outputs.logits[0].detach().numpy() predictions = torch.nn.functional.softmax(torch.tensor(scores), dim=0) sentiment = torch.argmax(predictions).item() return sentiment, predictions[sentiment].item() # Endpoint untuk analisis sentimen @app.post("/predict") async def predict(input: TextInput): sentiment, confidence = predict_sentiment(input.text) return {"sentiment": sentiment, "confidence": confidence} # Endpoint root @app.get("/") async def read_root(): return {"message": "Sentiment Analysis API"}