from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import torch # Inisialisasi model dan tokenizer model_name = "ragilbuaj/sentiment-analysis-TWS-reviews" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Inisialisasi FastAPI app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # Bisa disesuaikan dengan daftar asal yang diizinkan allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Model request body class TextInput(BaseModel): text: str # Fungsi untuk analisis sentimen def predict_sentiment(text): nlp = pipeline( "sentiment-analysis", model=model_name, tokenizer=model_name ) result = nlp(text)[0] sentiment = result['label'] confidence = result['score'] return sentiment, confidence # Endpoint untuk analisis sentimen @app.post("/predict") async def predict(input: TextInput): sentiment, confidence = predict_sentiment(input.text) return {"sentiment": sentiment, "confidence": confidence} # Endpoint root @app.get("/") async def read_root(): return {"message": "Sentiment Analysis API"}