Spaces:
Sleeping
Sleeping
Delete app/app.py
Browse files- app/app.py +0 -36
app/app.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
3 |
-
|
4 |
-
# Set page config
|
5 |
-
st.set_page_config(page_title="Fake News Detector", page_icon="📰")
|
6 |
-
|
7 |
-
# Hugging Face model path (change this to your actual repo ID)
|
8 |
-
MODEL_DIR = "ragkasi/bert-fake-news"
|
9 |
-
|
10 |
-
@st.cache_resource
|
11 |
-
def load_pipeline():
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
13 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR)
|
14 |
-
return pipeline("text-classification", model=model, tokenizer=tokenizer)
|
15 |
-
|
16 |
-
classifier = load_pipeline()
|
17 |
-
|
18 |
-
# UI
|
19 |
-
st.title("📰 Fake News Detector")
|
20 |
-
st.markdown("Enter a news **headline** or **statement**, and this app will predict if it's **real** or **fake**.")
|
21 |
-
|
22 |
-
news_input = st.text_area("✏️ News Text", height=150)
|
23 |
-
|
24 |
-
if st.button("🔍 Check News"):
|
25 |
-
if news_input.strip():
|
26 |
-
result = classifier(news_input)[0]
|
27 |
-
label = result["label"]
|
28 |
-
score = result["score"]
|
29 |
-
|
30 |
-
# Adjust label display
|
31 |
-
if label == "LABEL_1":
|
32 |
-
st.error(f"🚨 Likely **Fake News** (Confidence: `{score:.2f}`)")
|
33 |
-
else:
|
34 |
-
st.success(f"✅ Likely **Real News** (Confidence: `{score:.2f}`)")
|
35 |
-
else:
|
36 |
-
st.warning("⚠️ Please enter a news statement.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|