Spaces:
Build error
Build error
import streamlit as st | |
import tempfile | |
import os | |
import re | |
import torch | |
from threading import Thread | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, TextIteratorStreamer | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.vectorstores.faiss import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline | |
# Function return langchain document object of PDF pages | |
def fn_read_pdf(lv_temp_file_path, mv_processing_message): | |
"""Returns langchain document object of PDF pages""" | |
lv_pdf_loader = PyPDFLoader(lv_temp_file_path) | |
lv_pdf_content = lv_pdf_loader.load() | |
print("Step2: PDF content extracted") | |
mv_processing_message.text("Step2: PDF content extracted") | |
return lv_pdf_content | |
# Function return FAISS Vector store | |
def fn_create_faiss_vector_store(lv_pdf_content, mv_processing_message): | |
"""Returns FAISS vector store index of PDF Content""" | |
lv_embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/msmarco-distilbert-base-v4", | |
model_kwargs={'device': 'cpu'}, | |
encode_kwargs={'normalize_embeddings': False} | |
) | |
lv_vector_store = FAISS.from_documents(lv_pdf_content, lv_embeddings) | |
print("Step3: Vector store created") | |
mv_processing_message.text("Step3: Vector store created") | |
return lv_vector_store | |
# Function return QA Response using Vector Store | |
def fn_generate_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message): | |
"""Returns QA Response using Vector Store""" | |
lv_chat_history = [] | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
else: | |
lv_chat_history = st.session_state.chat_history | |
print("Step4: Generating LLM response") | |
mv_processing_message.text("Step4: Generating LLM response") | |
lv_tokenizer = AutoTokenizer.from_pretrained(mv_selected_model, trust_remote_code=True) | |
lv_model = AutoModelForCausalLM.from_pretrained( | |
mv_selected_model, | |
torch_dtype="auto", | |
device_map="cpu", | |
trust_remote_code=True | |
) | |
# lv_streamer = TextIteratorStreamer( | |
# tokenizer=lv_tokenizer, | |
# skip_prompt=True, | |
# skip_special_tokens=True, | |
# timeout=300.0 | |
# ) | |
lv_ms_phi2_pipeline = pipeline( | |
"text-generation", tokenizer=lv_tokenizer, model=lv_model, | |
device_map="cpu", max_new_tokens=512, return_full_text=True | |
) | |
lv_hf_phi2_pipeline = HuggingFacePipeline(pipeline=lv_ms_phi2_pipeline) | |
lv_chain = ConversationalRetrievalChain.from_llm(lv_hf_phi2_pipeline, lv_vector_store.as_retriever(), return_source_documents=True) | |
lv_response = lv_chain({"question": mv_user_question, 'chat_history': lv_chat_history}) | |
lv_chat_history += [(mv_user_question, lv_response["answer"])] | |
st.session_state.chat_history = lv_chat_history | |
print("Step5: LLM response generated") | |
mv_processing_message.text("Step5: LLM response generated") | |
return lv_response['answer'] | |
# Main Function | |
def main(): | |
# -- Streamlit Settings | |
st.set_page_config(layout='wide') | |
# -- Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
col1, col2, col3 = st.columns(3) | |
col2.title("Chat with your PDF") | |
st.text("") | |
col1, col2, col3 = st.columns(3) | |
mv_selected_model=col3.selectbox('Select Model',['microsoft/phi-2']) | |
st.text("") | |
st.text("") | |
st.text("") | |
col1, col2, col3 = st.columns(3) | |
# -- Reading PDF File | |
mv_pdf_input_file = col2.file_uploader("Choose a PDF file:", type=["pdf"]) | |
if 'mv_temp_file_storage_dir' not in st.session_state: | |
mv_temp_file_storage_dir = tempfile.mkdtemp() | |
st.session_state.mv_temp_file_storage_dir = mv_temp_file_storage_dir | |
else: | |
mv_temp_file_storage_dir = st.session_state.mv_temp_file_storage_dir | |
mv_processing_message = col2.empty() | |
st.text("") | |
st.text("") | |
st.text("") | |
st.text("") | |
st.text("") | |
st.text("") | |
mv_vector_storage_dir = "/workspace/knowledge-base/01-ML/01-dev/adhoc/Talk2PDF/vector_store" | |
if (mv_pdf_input_file is not None): | |
mv_file_name = mv_pdf_input_file.name | |
# mv_vectorstore_file_name = os.path.join(mv_vector_storage_dir, mv_file_name[:-4] + ".vectorstore") | |
# mv_metadata_file_name = os.path.join(mv_vector_storage_dir, mv_file_name[:-4] + ".metadata") | |
if 'lv_vector_store' not in st.session_state: | |
# -- Storing Uploaded PDF locally | |
lv_temp_file_path = os.path.join(mv_temp_file_storage_dir,mv_file_name) | |
with open(lv_temp_file_path,"wb") as lv_file: | |
lv_file.write(mv_pdf_input_file.getbuffer()) | |
print("Step1: PDF uploaded successfully at -> " + lv_temp_file_path) | |
mv_processing_message.text("Step1: PDF uploaded successfully at -> " + lv_temp_file_path) | |
# -- Extracting PDF Text | |
lv_pdf_content = fn_read_pdf(lv_temp_file_path, mv_processing_message) | |
# -- Creating FAISS Vector Store | |
lv_vector_store = fn_create_faiss_vector_store(lv_pdf_content, mv_processing_message) | |
st.session_state.lv_vector_store = lv_vector_store | |
else: | |
lv_vector_store = st.session_state.lv_vector_store | |
# -- Taking input question and generate answer | |
col1, col2, col3 = st.columns(3) | |
lv_chat_history = col2.chat_message | |
if mv_user_question := col2.chat_input("Chat on PDF Data"): | |
# -- Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": mv_user_question}) | |
# -- Generating LLM response | |
lv_response = fn_generate_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message) | |
# -- Adding assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": lv_response}) | |
# -- Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with lv_chat_history(message["role"]): | |
st.markdown(message["content"]) | |
# Calling Main Function | |
if __name__ == '__main__': | |
main() |