Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
5 |
+
import feedparser
|
6 |
+
import requests
|
7 |
+
import re
|
8 |
+
from datetime import datetime
|
9 |
+
import time
|
10 |
+
|
11 |
+
# Page configuration
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="Stock Market Sentiment Analyzer",
|
14 |
+
page_icon="📈",
|
15 |
+
layout="wide"
|
16 |
+
)
|
17 |
+
|
18 |
+
# Create two columns for the header
|
19 |
+
col1, col2 = st.columns([0.2, 1])
|
20 |
+
|
21 |
+
with col1:
|
22 |
+
# You can replace this with your own logo
|
23 |
+
st.image("https://api.dicebear.com/7.x/shapes/svg?seed=stocks", width=80)
|
24 |
+
|
25 |
+
with col2:
|
26 |
+
st.title("Stock Market Sentiment Analyzer")
|
27 |
+
|
28 |
+
st.markdown("**Analyze real-time market sentiment from news articles using DistilBERT-based deep learning model.**")
|
29 |
+
|
30 |
+
# Sidebar content
|
31 |
+
st.sidebar.subheader("About the App")
|
32 |
+
st.sidebar.info(
|
33 |
+
"""This app uses 🤗 HuggingFace's DistilBERT model fine-tuned on financial news data
|
34 |
+
to predict market sentiment in real-time. It processes news from various financial RSS feeds
|
35 |
+
and classifies sentiment as bullish, bearish, or neutral."""
|
36 |
+
)
|
37 |
+
|
38 |
+
st.sidebar.markdown("### Configuration")
|
39 |
+
st.sidebar.markdown("**Available RSS Feeds:**")
|
40 |
+
feed_options = {
|
41 |
+
"Benzinga Large Cap": "https://www.benzinga.com/news/large-cap/feed",
|
42 |
+
"Market Watch": "http://feeds.marketwatch.com/marketwatch/marketpulse/",
|
43 |
+
"Yahoo Finance": "https://finance.yahoo.com/news/rssindex"
|
44 |
+
}
|
45 |
+
selected_feed = st.sidebar.selectbox("Choose News Source:", list(feed_options.keys()))
|
46 |
+
|
47 |
+
refresh_interval = st.sidebar.slider(
|
48 |
+
"Refresh Interval (seconds)",
|
49 |
+
min_value=30,
|
50 |
+
max_value=300,
|
51 |
+
value=60,
|
52 |
+
help="How often to fetch new articles"
|
53 |
+
)
|
54 |
+
|
55 |
+
# Cache the model loading
|
56 |
+
@st.cache_resource
|
57 |
+
def load_model():
|
58 |
+
"""Load the sentiment analysis model and tokenizer"""
|
59 |
+
try:
|
60 |
+
model = DistilBertForSequenceClassification.from_pretrained('./sentiment_model')
|
61 |
+
tokenizer = DistilBertTokenizer.from_pretrained('./sentiment_model')
|
62 |
+
return model, tokenizer
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Error loading model: {str(e)}")
|
65 |
+
return None, None
|
66 |
+
|
67 |
+
def predict_sentiment(text, model, tokenizer):
|
68 |
+
"""Predict sentiment for given text"""
|
69 |
+
try:
|
70 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
71 |
+
outputs = model(**inputs)
|
72 |
+
logits = outputs.logits
|
73 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
74 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
75 |
+
confidence = probabilities[0][predicted_class].item()
|
76 |
+
|
77 |
+
sentiment_map = {0: 'bearish', 1: 'bullish', 2: 'neutral'}
|
78 |
+
return sentiment_map[predicted_class], confidence
|
79 |
+
except Exception as e:
|
80 |
+
st.error(f"Error in sentiment prediction: {str(e)}")
|
81 |
+
return "error", 0.0
|
82 |
+
|
83 |
+
def fetch_articles(feed_url):
|
84 |
+
"""Fetch and parse RSS feed"""
|
85 |
+
try:
|
86 |
+
headers = {
|
87 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
88 |
+
}
|
89 |
+
response = requests.get(feed_url, headers=headers, timeout=10)
|
90 |
+
feed = feedparser.parse(response.content)
|
91 |
+
|
92 |
+
articles = []
|
93 |
+
for entry in feed.entries[:10]: # Limit to 10 most recent articles
|
94 |
+
article = {
|
95 |
+
'title': entry.title,
|
96 |
+
'link': entry.link,
|
97 |
+
'summary': entry.get('summary', entry.title),
|
98 |
+
'published': entry.get('published', 'No date'),
|
99 |
+
'tickers': re.findall(r'\((\w+)\)', entry.title)
|
100 |
+
}
|
101 |
+
articles.append(article)
|
102 |
+
return articles
|
103 |
+
except Exception as e:
|
104 |
+
st.error(f"Error fetching articles: {str(e)}")
|
105 |
+
return []
|
106 |
+
|
107 |
+
def main():
|
108 |
+
# Load model
|
109 |
+
model, tokenizer = load_model()
|
110 |
+
if model is None or tokenizer is None:
|
111 |
+
st.error("Could not load the model. Please check if model files exist.")
|
112 |
+
return
|
113 |
+
|
114 |
+
# Main content area
|
115 |
+
col1, col2 = st.columns([2, 1])
|
116 |
+
|
117 |
+
with col1:
|
118 |
+
st.subheader("Latest Market News Analysis")
|
119 |
+
articles_container = st.empty()
|
120 |
+
|
121 |
+
while True:
|
122 |
+
try:
|
123 |
+
with st.spinner('Fetching latest articles...'):
|
124 |
+
articles = fetch_articles(feed_options[selected_feed])
|
125 |
+
|
126 |
+
if articles:
|
127 |
+
with articles_container.container():
|
128 |
+
for article in articles:
|
129 |
+
sentiment, confidence = predict_sentiment(
|
130 |
+
article['summary'],
|
131 |
+
model,
|
132 |
+
tokenizer
|
133 |
+
)
|
134 |
+
|
135 |
+
# Create card-like display for each article
|
136 |
+
with st.expander(f"📰 {article['title']}", expanded=False):
|
137 |
+
st.write(f"**Published:** {article['published']}")
|
138 |
+
|
139 |
+
# Display tickers if found
|
140 |
+
if article['tickers']:
|
141 |
+
st.write(f"**Tickers:** {', '.join(article['tickers'])}")
|
142 |
+
|
143 |
+
# Color-coded sentiment with confidence
|
144 |
+
sentiment_colors = {
|
145 |
+
'bullish': 'green',
|
146 |
+
'bearish': 'red',
|
147 |
+
'neutral': 'grey'
|
148 |
+
}
|
149 |
+
st.markdown(
|
150 |
+
f"**Sentiment:** :{sentiment_colors[sentiment]}[{sentiment.upper()}] "
|
151 |
+
f"({confidence:.1%} confidence)"
|
152 |
+
)
|
153 |
+
|
154 |
+
st.write("**Summary:**")
|
155 |
+
st.write(article['summary'])
|
156 |
+
st.write(f"[Read full article]({article['link']})")
|
157 |
+
|
158 |
+
st.caption(f"Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
159 |
+
|
160 |
+
# Statistics in the second column
|
161 |
+
with col2:
|
162 |
+
st.subheader("Sentiment Overview")
|
163 |
+
|
164 |
+
# Calculate sentiment distribution
|
165 |
+
sentiments = [predict_sentiment(a['summary'], model, tokenizer)[0]
|
166 |
+
for a in articles]
|
167 |
+
|
168 |
+
# Create metrics
|
169 |
+
sentiment_counts = pd.Series(sentiments).value_counts()
|
170 |
+
total = len(sentiments)
|
171 |
+
|
172 |
+
# Display metrics with gauges
|
173 |
+
col_a, col_b, col_c = st.columns(3)
|
174 |
+
with col_a:
|
175 |
+
bullish_count = sentiment_counts.get('bullish', 0)
|
176 |
+
st.metric("Bullish", f"{bullish_count}/{total}")
|
177 |
+
with col_b:
|
178 |
+
bearish_count = sentiment_counts.get('bearish', 0)
|
179 |
+
st.metric("Bearish", f"{bearish_count}/{total}")
|
180 |
+
with col_c:
|
181 |
+
neutral_count = sentiment_counts.get('neutral', 0)
|
182 |
+
st.metric("Neutral", f"{neutral_count}/{total}")
|
183 |
+
|
184 |
+
# Display sentiment distribution chart
|
185 |
+
st.bar_chart(sentiment_counts)
|
186 |
+
|
187 |
+
time.sleep(refresh_interval)
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
st.error(f"An error occurred: {str(e)}")
|
191 |
+
time.sleep(refresh_interval)
|
192 |
+
|
193 |
+
# Footer
|
194 |
+
st.sidebar.divider()
|
195 |
+
st.sidebar.caption("Made with Streamlit and HuggingFace 🤗")
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
main()
|