Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,203 +1,70 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import torch
|
4 |
-
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
5 |
import feedparser
|
6 |
-
import
|
7 |
-
import
|
8 |
-
from datetime import datetime
|
9 |
-
import time
|
10 |
-
from huggingface_hub import notebook_login
|
11 |
-
|
12 |
-
notebook_login()
|
13 |
-
|
14 |
-
# Page configuration
|
15 |
-
st.set_page_config(
|
16 |
-
page_title="Stock Market Sentiment Analyzer",
|
17 |
-
page_icon="📈",
|
18 |
-
layout="wide"
|
19 |
-
)
|
20 |
-
|
21 |
-
# Create two columns for the header
|
22 |
-
col1, col2 = st.columns([0.2, 1])
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
st.title("Stock Market Sentiment Analyzer")
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
st.
|
43 |
-
feed_options = {
|
44 |
-
"Benzinga Large Cap": "https://www.benzinga.com/news/large-cap/feed",
|
45 |
-
"Market Watch": "http://feeds.marketwatch.com/marketwatch/marketpulse/",
|
46 |
-
"Yahoo Finance": "https://finance.yahoo.com/news/rssindex"
|
47 |
-
}
|
48 |
-
selected_feed = st.sidebar.selectbox("Choose News Source:", list(feed_options.keys()))
|
49 |
|
50 |
-
|
51 |
-
"
|
52 |
-
|
53 |
-
max_value=300,
|
54 |
-
value=60,
|
55 |
-
help="How often to fetch new articles"
|
56 |
-
)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
"""Load the sentiment analysis model and tokenizer"""
|
62 |
-
try:
|
63 |
-
model = DistilBertForSequenceClassification.from_pretrained('./sentiment_model')
|
64 |
-
tokenizer = DistilBertTokenizer.from_pretrained('./sentiment_model')
|
65 |
-
return model, tokenizer
|
66 |
-
except Exception as e:
|
67 |
-
st.error(f"Error loading model: {str(e)}")
|
68 |
-
return None, None
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
outputs = model(**inputs)
|
75 |
-
logits = outputs.logits
|
76 |
-
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
77 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
78 |
-
confidence = probabilities[0][predicted_class].item()
|
79 |
-
|
80 |
-
sentiment_map = {0: 'bearish', 1: 'bullish', 2: 'neutral'}
|
81 |
-
return sentiment_map[predicted_class], confidence
|
82 |
-
except Exception as e:
|
83 |
-
st.error(f"Error in sentiment prediction: {str(e)}")
|
84 |
-
return "error", 0.0
|
85 |
|
86 |
-
|
87 |
-
"
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
response = requests.get(feed_url, headers=headers, timeout=10)
|
93 |
-
feed = feedparser.parse(response.content)
|
94 |
-
|
95 |
-
articles = []
|
96 |
-
for entry in feed.entries[:10]: # Limit to 10 most recent articles
|
97 |
-
article = {
|
98 |
-
'title': entry.title,
|
99 |
-
'link': entry.link,
|
100 |
-
'summary': entry.get('summary', entry.title),
|
101 |
-
'published': entry.get('published', 'No date'),
|
102 |
-
'tickers': re.findall(r'\((\w+)\)', entry.title)
|
103 |
-
}
|
104 |
-
articles.append(article)
|
105 |
-
return articles
|
106 |
-
except Exception as e:
|
107 |
-
st.error(f"Error fetching articles: {str(e)}")
|
108 |
-
return []
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
model, tokenizer = load_model()
|
113 |
-
if model is None or tokenizer is None:
|
114 |
-
st.error("Could not load the model. Please check if model files exist.")
|
115 |
return
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
st.
|
122 |
-
articles_container = st.empty()
|
123 |
-
|
124 |
-
while True:
|
125 |
-
try:
|
126 |
-
with st.spinner('Fetching latest articles...'):
|
127 |
-
articles = fetch_articles(feed_options[selected_feed])
|
128 |
-
|
129 |
-
if articles:
|
130 |
-
with articles_container.container():
|
131 |
-
for article in articles:
|
132 |
-
sentiment, confidence = predict_sentiment(
|
133 |
-
article['summary'],
|
134 |
-
model,
|
135 |
-
tokenizer
|
136 |
-
)
|
137 |
-
|
138 |
-
# Create card-like display for each article
|
139 |
-
with st.expander(f"📰 {article['title']}", expanded=False):
|
140 |
-
st.write(f"**Published:** {article['published']}")
|
141 |
-
|
142 |
-
# Display tickers if found
|
143 |
-
if article['tickers']:
|
144 |
-
st.write(f"**Tickers:** {', '.join(article['tickers'])}")
|
145 |
-
|
146 |
-
# Color-coded sentiment with confidence
|
147 |
-
sentiment_colors = {
|
148 |
-
'bullish': 'green',
|
149 |
-
'bearish': 'red',
|
150 |
-
'neutral': 'grey'
|
151 |
-
}
|
152 |
-
st.markdown(
|
153 |
-
f"**Sentiment:** :{sentiment_colors[sentiment]}[{sentiment.upper()}] "
|
154 |
-
f"({confidence:.1%} confidence)"
|
155 |
-
)
|
156 |
-
|
157 |
-
st.write("**Summary:**")
|
158 |
-
st.write(article['summary'])
|
159 |
-
st.write(f"[Read full article]({article['link']})")
|
160 |
-
|
161 |
-
st.caption(f"Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
162 |
-
|
163 |
-
# Statistics in the second column
|
164 |
-
with col2:
|
165 |
-
st.subheader("Sentiment Overview")
|
166 |
-
|
167 |
-
# Calculate sentiment distribution
|
168 |
-
sentiments = [predict_sentiment(a['summary'], model, tokenizer)[0]
|
169 |
-
for a in articles]
|
170 |
-
|
171 |
-
# Create metrics
|
172 |
-
sentiment_counts = pd.Series(sentiments).value_counts()
|
173 |
-
total = len(sentiments)
|
174 |
-
|
175 |
-
# Display metrics with gauges
|
176 |
-
col_a, col_b, col_c = st.columns(3)
|
177 |
-
with col_a:
|
178 |
-
bullish_count = sentiment_counts.get('bullish', 0)
|
179 |
-
st.metric("Bullish", f"{bullish_count}/{total}")
|
180 |
-
with col_b:
|
181 |
-
bearish_count = sentiment_counts.get('bearish', 0)
|
182 |
-
st.metric("Bearish", f"{bearish_count}/{total}")
|
183 |
-
with col_c:
|
184 |
-
neutral_count = sentiment_counts.get('neutral', 0)
|
185 |
-
st.metric("Neutral", f"{neutral_count}/{total}")
|
186 |
-
|
187 |
-
# Display sentiment distribution chart
|
188 |
-
st.bar_chart(sentiment_counts)
|
189 |
-
|
190 |
-
time.sleep(refresh_interval)
|
191 |
-
|
192 |
-
except Exception as e:
|
193 |
-
st.error(f"An error occurred: {str(e)}")
|
194 |
-
time.sleep(refresh_interval)
|
195 |
-
|
196 |
-
# Footer
|
197 |
-
st.sidebar.divider()
|
198 |
-
st.sidebar.caption("Made with Streamlit and HuggingFace 🤗")
|
199 |
|
200 |
if __name__ == "__main__":
|
201 |
-
main()
|
202 |
-
|
203 |
-
#test
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
3 |
import feedparser
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load the trained model and tokenizer
|
8 |
+
MODEL_NAME = "financial-sentiment-model"
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
|
12 |
+
LABEL_MAP = {0: "bullish", 1: "bearish", 2: "neutral"}
|
|
|
13 |
|
14 |
+
# RSS Feed URLs
|
15 |
+
rss_feeds = {
|
16 |
+
"Benzinga": ["https://www.benzinga.com/feeds/news", "https://www.benzinga.com/feeds/analysis"],
|
17 |
+
"Yahoo News": ["https://finance.yahoo.com/rss/topstories"]
|
18 |
+
}
|
19 |
|
20 |
+
def fetch_rss_feed(url):
|
21 |
+
"""Fetch articles from an RSS feed."""
|
22 |
+
feed = feedparser.parse(url)
|
23 |
+
articles = []
|
24 |
+
for entry in feed.entries:
|
25 |
+
articles.append({"title": entry.title, "link": entry.link})
|
26 |
+
return articles
|
27 |
+
|
28 |
+
def analyze_sentiment(text):
|
29 |
+
"""Analyze sentiment of a given text."""
|
30 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs)
|
33 |
+
predictions = torch.argmax(outputs.logits, dim=-1).item()
|
34 |
+
return LABEL_MAP[predictions]
|
35 |
|
36 |
+
def main():
|
37 |
+
st.title("Financial News Sentiment Analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Sidebar: Feed Selection
|
40 |
+
st.sidebar.header("Select RSS Feeds")
|
41 |
+
selected_feeds = st.sidebar.multiselect("Choose feeds:", options=rss_feeds.keys(), default=list(rss_feeds.keys()))
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
if not selected_feeds:
|
44 |
+
st.warning("Please select at least one RSS feed.")
|
45 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
st.sidebar.header("About")
|
48 |
+
st.sidebar.info(
|
49 |
+
"This app fetches financial news from RSS feeds and analyzes sentiment (buy, sell, hold) based on the latest news titles."
|
50 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Fetch and Display Articles
|
53 |
+
st.header("Latest Financial News")
|
54 |
+
articles = []
|
55 |
+
for feed_name in selected_feeds:
|
56 |
+
for url in rss_feeds[feed_name]:
|
57 |
+
articles.extend(fetch_rss_feed(url))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
if not articles:
|
60 |
+
st.write("No articles found.")
|
|
|
|
|
|
|
61 |
return
|
62 |
|
63 |
+
for article in articles:
|
64 |
+
sentiment = analyze_sentiment(article["title"])
|
65 |
+
st.subheader(article["title"])
|
66 |
+
st.write(f"Sentiment: **{sentiment}**")
|
67 |
+
st.write(f"[Read more]({article['link']})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
+
main()
|
|
|
|