Spaces:
Running
Running
File size: 8,422 Bytes
7b444b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/book/LabellingTracker/13_Floating.ipynb.
# %% auto 0
__all__ = ['df', 'get_floating_grp_data', 'get_floating_summary', 'get_floating_hist', 'get_step_df', 'get_gantt']
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 2
import streamlit as st
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 6
st.set_page_config(
page_title="Floating",
page_icon="π",
layout='wide'
)
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 8
# st.sidebar.success("Select a demo above.")
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 11
def get_floating_grp_data(df):
grp_df = df.loc[df['TAG']=='FLOATING', ['Trial_Num', 'AccountNumber', 'AccountName', 'CattleFolder/Frame', 'TAG', 'Assigned',
'Recording_Date', 'Video_Reception_Date', 'Assignment_Date',
'Target_Date', 'Labelling_Received_Date','Verification_Date', 'Completion/Rejection_Date']].groupby(['Trial_Num',
'AccountNumber',
'AccountName',
'TAG',
'CattleFolder/Frame',
],
as_index=False).agg({'Recording_Date':['min','max'],
'Video_Reception_Date':'max',
'Assignment_Date':'min',
'Target_Date':'max',
'Labelling_Received_Date':'max',
'Verification_Date':'max',
'Completion/Rejection_Date':'max',
'Assigned': 'sum'})
flat_cols = ["_".join(i).rstrip('_') for i in grp_df.columns];# flat_cols
grp_df.columns = flat_cols
grp_df['Recording'] = (grp_df['Recording_Date_max'] - grp_df['Recording_Date_min']).dt.days+1
grp_df['Waiting4Video'] = (grp_df['Video_Reception_Date_max'] - grp_df['Recording_Date_max']).dt.days
grp_df['Waiting4Assignment'] = (grp_df['Assignment_Date_min'] - grp_df['Video_Reception_Date_max']).dt.days
grp_df['Labelling'] = (grp_df['Target_Date_max'] - grp_df['Assignment_Date_min']).dt.days
grp_df['Waiting4Labels'] = (grp_df['Labelling_Received_Date_max'] - grp_df['Target_Date_max']).dt.days
grp_df['Waiting4Verification'] = (grp_df['Verification_Date_max'] - grp_df['Labelling_Received_Date_max']).dt.days
grp_df['Waiting4Completion'] = (grp_df['Completion/Rejection_Date_max'] - grp_df['Verification_Date_max']).dt.days
grp_df['Labelling_Duration'] = grp_df['Labelling'] + grp_df['Waiting4Labels'].fillna(0)
return grp_df
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 13
def get_floating_summary(df):
fig, ax = plt.subplots()
grp_df = get_floating_grp_data(df)
states = ['Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling', 'Waiting4Labels', 'Waiting4Verification','Waiting4Completion']
colors = dict(zip(states, ['blue', 'red', 'green', 'yellow', 'cyan', 'violet', 'pink']))
grp_df[['AccountNumber','Assigned_sum', 'AccountName', 'CattleFolder/Frame','Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling', 'Waiting4Labels', 'Waiting4Verification','Waiting4Completion']].set_index(['AccountNumber', 'AccountName', 'CattleFolder/Frame']).plot(kind='barh', stacked=True, ax=ax, color=colors);
return fig
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 14
def get_floating_hist(df, col):
grp_df = get_floating_grp_data(df)
fig, ax = plt.subplots()
grp_df[col].plot(kind='hist', ax=ax, legend=True)
avg = grp_df[col].mean()
count = grp_df[col].count()
ax.axvline(avg, color='red', label=f'mean={avg}')
ax.set_title(f'{col}[ mean={avg:.2f}, count={count:.2f} ]')
return fig
# get_floating_hist(df, 'Recording_Duration')
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 15
def get_step_df(grp_df, start_step, end_step, step_name):
df_e = grp_df[['AccountNumber', 'AccountName','Assigned_sum', 'CattleFolder/Frame']].copy()
df_e['Start'] = grp_df[start_step]
df_e['End'] = grp_df[end_step]
df_e['Step'] = step_name
return df_e
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 17
def get_gantt(df):
steps = [
{'start_step': 'Recording_Date_min', 'end_step' :'Recording_Date_max', 'step_name' : 'Recording'},
{'start_step': 'Recording_Date_max', 'end_step' :'Video_Reception_Date_max', 'step_name' : 'Waiting4Video'},
{'start_step': 'Video_Reception_Date_max', 'end_step' :'Assignment_Date_min', 'step_name' : 'Waiting4Assignment'},
{'start_step': 'Assignment_Date_min', 'end_step' :'Target_Date_max', 'step_name' : 'Labelling'},
{'start_step': 'Target_Date_max', 'end_step' :'Labelling_Received_Date_max', 'step_name' : 'Waiting4Labels'},
{'start_step': 'Labelling_Received_Date_max', 'end_step' :'Verification_Date_max', 'step_name' : 'Waiting4Verification'},
{'start_step': 'Verification_Date_max', 'end_step' :'Completion/Rejection_Date_max', 'step_name' : 'Waiting4Completion'},
]
grp_df = get_floating_grp_data(df)
df_concat = pd.concat(get_step_df(grp_df, start_step=step['start_step'], end_step=step['end_step'], step_name=step['step_name']) for step in steps)
df_concat['label'] = df['AccountName'] +"_"+ df['CattleFolder/Frame']
df_concat.loc[df_concat['Step']=='Recording', 'Start'] = df_concat.loc[df_concat['Step']=='Recording', 'Start'] - pd.Timedelta(days=1)
# # df_concat
states = [s['step_name'] for s in steps]; # states
colors = dict(zip(states, ['blue', 'red', 'green', 'yellow', 'cyan', 'violet', 'pink']))
fig = px.timeline(data_frame=df_concat, x_start='Start', x_end='End', y='CattleFolder/Frame', color='Step', color_discrete_map=colors, hover_data=['Assigned_sum', 'AccountName', 'AccountNumber'])
# fig.update_layout(legend=dict(
# orientation="h",
# ))
return fig
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 21
df = None
st.write("# Floating Details")
if 'processed_df' not in st.session_state:
st.write("Please go to andon page and upload data")
else:
df = st.session_state['processed_df']
col_order = st.session_state['col_order']
colors = st.session_state['colors']
colors2= st.session_state['colors2']
st.markdown("## Summary Floating Durations")
with st.container(border=True):
st.pyplot(get_floating_summary(df))
ncols = 3
dcols = st.columns(ncols)
for i, col in enumerate(['Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling_Duration', 'Waiting4Verification', 'Waiting4Completion']):
with dcols[i%ncols]:
st.pyplot(get_floating_hist(df, col), use_container_width=True)
st.markdown("## Timeline")
with st.container(border=True):
st.plotly_chart(get_gantt(df), theme="streamlit", use_container_width=True)
|