File size: 5,870 Bytes
7b444b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/book/LabellingTracker/11_Andon.ipynb.

# %% auto 0
__all__ = ['df', 'get_data', 'get_df_extra', 'kpi', 'get_floating_count', 'get_model_count']

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 2
import streamlit as st
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 6
st.set_page_config(
    page_title="Andon",
    layout='wide'
)

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 9
def get_data(fname="Labelling_Tracking_v28.06.24.xlsx", 
             sheet_name='MASTER', 
             date_cols=['Recording_Date', 'Assignment_Date', 'Video_Reception_Date','Target_Date', 'Labelling_Received_Date', 'Verification_Date', 'Completion/Rejection_Date']):
    df = pd.read_excel(fname, sheet_name=sheet_name, 
                    parse_dates=date_cols)

    df['Assigned']=df['Assigned'].str.split(".").str.join(" ").str.upper()
    return df
# colors

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 10
def get_df_extra(fname):
    df = get_data(fname=fname, 
                  sheet_name='MASTER', 
                  date_cols=['Recording_Date', 'Assignment_Date', 'Video_Reception_Date','Target_Date', 'Labelling_Received_Date', 'Verification_Date', 'Completion/Rejection_Date'])


    col_order= pd.read_excel(fname, sheet_name='STATUS')
    col_order = col_order['STATUS STATES'].tolist()

    colors = dict(zip(col_order, sns.color_palette("Set2", len(col_order))))
    # col_order

    colors2 = dict(zip(col_order, ['blue', 'red', 'green', 'yellow', 'cyan', 'violet', 'pink', 'magenta']))
    return df, col_order, colors, colors2

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 13
def kpi(df):
    cattle_days = df.loc[df['TAG']=='FLOATING', ['CattleFolder/Frame', 'SubFolder']].groupby('CattleFolder/Frame').count().sum().values[0]
    model_days = df.loc[df['TAG']=='MODEL', ['CattleFolder/Frame', 'SubFolder']].groupby('CattleFolder/Frame').count().sum().values[0]
    cattle_floating = df.loc[df['TAG']=='FLOATING', ['CattleFolder/Frame']].nunique().values[0]
    accounts_floating = df.loc[df['TAG']=='FLOATING', 'AccountNumber'].nunique()
    frames_model = df.loc[df['TAG']=='MODEL', ['AccountNumber', 'CattleFolder/Frame']].groupby('AccountNumber').nunique().sum().values[0]
    accounts_model = df.loc[df['TAG']=='MODEL', 'AccountNumber'].nunique()
    count_user_floating = len(set(df.loc[df['TAG']=='FLOATING', 'Assigned'].dropna().str.split('/').sum()))
    count_model_floating = len(set(df.loc[df['TAG']=='MODEL', 'Assigned'].dropna().str.split('/').sum()))
    col1, col2, col3, col4 = st.columns(4)
    col1.metric('Floating Days/Cattle', f'{cattle_days}/{cattle_floating}[{accounts_floating}]')
    col2.metric('Labellers Floating', count_user_floating)
    col3.metric('Model Days/Frame',f'{model_days}/{frames_model}[{accounts_model}]')
    col4.metric('Labellers Model', count_model_floating)

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 14
def get_floating_count(df, col_order, colors):
    fig, ax = plt.subplots()
    # df.loc[df['TAG']=='FLOATING', ['AccountNumber', 'AccountName','CattleFolder/Frame']].groupby(['AccountNumber', 'AccountName']).nunique().rename(columns={'CattleFolder/Frame':'Count'}).sort_values(by='Count').plot(kind='barh', ax=ax)
    data = df.loc[df['TAG']=='FLOATING', ['AccountNumber', 'AccountName', 'Status', 'CattleFolder/Frame']].drop_duplicates()
    o = data.groupby(['AccountNumber','AccountName', 'Status'])['CattleFolder/Frame'].count().unstack('Status').fillna(0).sort_values(by='AccountName')
    sel_cols = [x for x in col_order if x in o.columns]
    sel_colors = {k:colors[k] for k in sel_cols}
    o[sel_cols].plot(kind='barh', stacked=True, ax=ax, color=sel_colors)
    # ax.bar_label(ax.containers[-1])
    return fig

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 16
def get_model_count(df,col_order, colors):
    fig, ax = plt.subplots()
    # df.loc[df['TAG']=='MODEL', ['AccountNumber', 'AccountName','CattleFolder/Frame']].groupby(['AccountNumber', 'AccountName']).count().rename(columns={'CattleFolder/Frame':'Count'}).sort_values(by='Count').plot(kind='barh', ax=ax)
    data = df.loc[df['TAG']=='MODEL', ['AccountNumber', 'AccountName', 'Status', 'CattleFolder/Frame', 'SubFolder']].drop_duplicates()
    o = data.groupby(['AccountNumber','AccountName', 'Status'])['CattleFolder/Frame'].count().unstack('Status').fillna(0).sort_values(by='AccountName')
    sel_cols = [x for x in col_order if x in o.columns]
    sel_colors = {k:colors[k] for k in sel_cols}
    o[sel_cols].plot(kind='barh', stacked=True, ax=ax, color=colors)
    # ax.bar_label(ax.containers[0])
    return fig

# %% ../../nbs/book/LabellingTracker/11_Andon.ipynb 18
df = None
st.write("# Labelling Andon Board")
if 'processed_df' not in st.session_state:
    uploaded_file = st.file_uploader("Choose a file", type = 'xlsx')
    if uploaded_file is not None:
        df, col_order, colors, colors2=get_df_extra(uploaded_file)
        st.session_state['processed_df'] = df
        st.session_state['col_order'] = col_order
        st.session_state['colors'] = colors
        st.session_state['colors2'] = colors2
else:
    df = st.session_state['processed_df'] 
    col_order = st.session_state['col_order'] 
    colors = st.session_state['colors']
    colors2= st.session_state['colors2']

if df is not None:
    kpi(df)

    st.write("## Total Available")
    col1, col2 = st.columns(2)
    with col1:
        st.markdown("Number of Cattles per Floating Account")
        fig = get_floating_count(df, col_order, colors)
        st.pyplot(fig)

    with col2:
        st.markdown("Frame-Dates per Model Account")
        fig2 = get_model_count(df, col_order, colors)
        st.pyplot(fig2)