Spaces:
Sleeping
Sleeping
File size: 9,670 Bytes
7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 a66dc2e 7b444b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/book/LabellingTracker/13_Floating.ipynb.
# %% auto 0
__all__ = ['df', 'kpi', 'get_floating_grp_data', 'get_floating_summary', 'get_floating_hist', 'get_step_df', 'get_gantt']
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 2
import streamlit as st
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 6
st.set_page_config(
page_title="Floating",
page_icon="π",
layout='wide'
)
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 7
# st.sidebar.success("Select a demo above.")
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 10
def kpi(df):
cattle_days = df.loc[df['TAG']=='FLOATING', ['CattleFolder/Frame', 'SubFolder']].groupby('CattleFolder/Frame').count().sum().values[0]
cattle_floating = df.loc[df['TAG']=='FLOATING', ['CattleFolder/Frame']].nunique().values[0]
accounts_floating = df.loc[df['TAG']=='FLOATING', 'AccountNumber'].nunique()
count_user_floating = len(set(df.loc[df['TAG']=='FLOATING', 'Assigned'].dropna().str.split('/').sum()))
count_valid_floating = (df.loc[df['TAG']=='FLOATING', ['CattleFolder/Frame', 'SubFolder']].groupby('CattleFolder/Frame').count() > 1)['SubFolder'].sum()
count_exceptional_floating =(df.loc[df['TAG']=='FLOATING', ['CattleFolder/Frame', 'SubFolder']].groupby('CattleFolder/Frame').count() > 10)['SubFolder'].sum()
col1, col2, col3, col4 = st.columns(4)
col1.metric('Floating Days/Cattle', f'{cattle_days}/{cattle_floating}[{accounts_floating}]')
col2.metric('Labellers Floating', count_user_floating)
col3.metric('Valid Cattles', f'{count_valid_floating}/{cattle_floating}')
col4.metric('Exceptional Cattles', f'{count_exceptional_floating}/{cattle_floating}')
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 11
def get_floating_grp_data(df):
grp_df = df.loc[df['TAG']=='FLOATING', ['Trial_Num', 'AccountNumber', 'AccountName', 'CattleFolder/Frame', 'TAG', 'Assigned',
'Recording_Date', 'Video_Reception_Date', 'Assignment_Date',
'Target_Date', 'Labelling_Received_Date','Verification_Date', 'Completion/Rejection_Date']].groupby(['Trial_Num',
'AccountNumber',
'AccountName',
'TAG',
'CattleFolder/Frame',
],
as_index=False).agg({'Recording_Date':['min','max'],
'Video_Reception_Date':'max',
'Assignment_Date':'min',
'Target_Date':'max',
'Labelling_Received_Date':'max',
'Verification_Date':'max',
'Completion/Rejection_Date':'max',
'Assigned': 'sum'})
flat_cols = ["_".join(i).rstrip('_') for i in grp_df.columns];# flat_cols
grp_df.columns = flat_cols
grp_df['Recording'] = (grp_df['Recording_Date_max'] - grp_df['Recording_Date_min']).dt.days+1
grp_df['Waiting4Video'] = (grp_df['Video_Reception_Date_max'] - grp_df['Recording_Date_max']).dt.days
grp_df['Waiting4Assignment'] = (grp_df['Assignment_Date_min'] - grp_df['Video_Reception_Date_max']).dt.days
grp_df['Labelling'] = (grp_df['Target_Date_max'] - grp_df['Assignment_Date_min']).dt.days
grp_df['Waiting4Labels'] = (grp_df['Labelling_Received_Date_max'] - grp_df['Target_Date_max']).dt.days
grp_df['Waiting4Verification'] = (grp_df['Verification_Date_max'] - grp_df['Labelling_Received_Date_max']).dt.days
grp_df['Waiting4Completion'] = (grp_df['Completion/Rejection_Date_max'] - grp_df['Verification_Date_max']).dt.days
grp_df['Labelling_Duration'] = grp_df['Labelling'] + grp_df['Waiting4Labels'].fillna(0)
return grp_df
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 13
def get_floating_summary(df):
fig, ax = plt.subplots()
grp_df = get_floating_grp_data(df)
states = ['Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling', 'Waiting4Labels', 'Waiting4Verification','Waiting4Completion']
colors = dict(zip(states, ['blue', 'red', 'green', 'yellow', 'cyan', 'violet', 'pink']))
grp_df[['AccountNumber','Assigned_sum', 'AccountName', 'CattleFolder/Frame','Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling', 'Waiting4Labels', 'Waiting4Verification','Waiting4Completion']].set_index(['AccountNumber', 'AccountName', 'CattleFolder/Frame']).plot(kind='barh', stacked=True, ax=ax, color=colors);
fig.tight_layout()
return fig
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 15
def get_floating_hist(df, col):
grp_df = get_floating_grp_data(df)
fig, ax = plt.subplots()
grp_df[col].plot(kind='hist', ax=ax, legend=True)
avg = grp_df[col].mean()
count = grp_df[col].count()
ax.axvline(avg, color='red', label=f'mean={avg}')
ax.set_title(f'{col}[ mean={avg:.2f}, count={count:.2f} ]')
return fig
# get_floating_hist(df, 'Recording_Duration')
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 17
def get_step_df(grp_df, start_step, end_step, step_name):
df_e = grp_df[['AccountNumber', 'AccountName','Assigned_sum', 'CattleFolder/Frame']].copy()
df_e['Start'] = grp_df[start_step]
df_e['End'] = grp_df[end_step]
df_e['Step'] = step_name
return df_e
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 19
def get_gantt(df):
steps = [
{'start_step': 'Recording_Date_min', 'end_step' :'Recording_Date_max', 'step_name' : 'Recording'},
{'start_step': 'Recording_Date_max', 'end_step' :'Video_Reception_Date_max', 'step_name' : 'Waiting4Video'},
{'start_step': 'Video_Reception_Date_max', 'end_step' :'Assignment_Date_min', 'step_name' : 'Waiting4Assignment'},
{'start_step': 'Assignment_Date_min', 'end_step' :'Target_Date_max', 'step_name' : 'Labelling'},
{'start_step': 'Target_Date_max', 'end_step' :'Labelling_Received_Date_max', 'step_name' : 'Waiting4Labels'},
{'start_step': 'Labelling_Received_Date_max', 'end_step' :'Verification_Date_max', 'step_name' : 'Waiting4Verification'},
{'start_step': 'Verification_Date_max', 'end_step' :'Completion/Rejection_Date_max', 'step_name' : 'Waiting4Completion'},
]
grp_df = get_floating_grp_data(df)
df_concat = pd.concat(get_step_df(grp_df, start_step=step['start_step'], end_step=step['end_step'], step_name=step['step_name']) for step in steps)
df_concat['label'] = df['AccountName'] +"_"+ df['CattleFolder/Frame']
df_concat.loc[df_concat['Step']=='Recording', 'Start'] = df_concat.loc[df_concat['Step']=='Recording', 'Start'] - pd.Timedelta(days=1)
# # df_concat
states = [s['step_name'] for s in steps]; # states
colors = dict(zip(states, ['blue', 'red', 'green', 'yellow', 'cyan', 'violet', 'pink']))
fig = px.timeline(data_frame=df_concat, x_start='Start', x_end='End', y='CattleFolder/Frame', color='Step', color_discrete_map=colors, hover_data=['Assigned_sum', 'AccountName', 'AccountNumber'])
# fig.update_layout(legend=dict(
# orientation="h",
# ))
return fig
# %% ../../nbs/book/LabellingTracker/13_Floating.ipynb 23
#|eval: false
df = None
st.write("# Floating Details")
if 'processed_df' not in st.session_state:
st.write("Please go to andon page and upload data")
else:
df = st.session_state['processed_df']
col_order = st.session_state['col_order']
colors = st.session_state['colors']
colors2= st.session_state['colors2']
st.markdown("## Summary Floating Durations")
kpi(df)
with st.container(border=True):
st.pyplot(get_floating_summary(df))
ncols = 3
dcols = st.columns(ncols)
for i, col in enumerate(['Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling_Duration', 'Waiting4Verification', 'Waiting4Completion']):
with dcols[i%ncols]:
st.pyplot(get_floating_hist(df, col), use_container_width=True)
st.markdown("## Timeline")
with st.container(border=True):
st.plotly_chart(get_gantt(df), theme="streamlit", use_container_width=True)
|