Spaces:
Sleeping
Sleeping
File size: 8,938 Bytes
7b444b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/book/LabellingTracker/14_Model.ipynb.
# %% auto 0
__all__ = ['df', 'get_model_grp_data', 'get_model_summary', 'get_model_hist', 'get_step_df', 'get_gantt']
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 2
import streamlit as st
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 6
st.set_page_config(
page_title="Model",
page_icon="π",
layout='wide'
)
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 8
# st.sidebar.success("Select a demo above.")
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 11
def get_model_grp_data(df):
grp_df = df.loc[df['TAG']=='MODEL', ['Trial_Num', 'AccountNumber', 'AccountName', 'CattleFolder/Frame','SubFolder', 'TAG', 'Assigned',
'Recording_Date', 'Video_Reception_Date', 'Assignment_Date',
'Target_Date', 'Labelling_Received_Date','Verification_Date', 'Completion/Rejection_Date']].groupby(['Trial_Num',
'AccountNumber',
'AccountName',
'TAG',
'CattleFolder/Frame',
'SubFolder'
],
as_index=False).agg({'Recording_Date':['min','max'],
'Video_Reception_Date':'max',
'Assignment_Date':'min',
'Target_Date':'max',
'Labelling_Received_Date':'max',
'Verification_Date':'max',
'Completion/Rejection_Date':'max',
'Assigned': 'sum'})
flat_cols = ["_".join(i).rstrip('_') for i in grp_df.columns];# flat_cols
grp_df.columns = flat_cols
grp_df['Recording'] = (grp_df['Recording_Date_max'] - grp_df['Recording_Date_min']).dt.days+1
grp_df['Waiting4Video'] = (grp_df['Video_Reception_Date_max'] - grp_df['Recording_Date_max']).dt.days
grp_df['Waiting4Assignment'] = (grp_df['Assignment_Date_min'] - grp_df['Video_Reception_Date_max']).dt.days
grp_df['Labelling'] = (grp_df['Target_Date_max'] - grp_df['Assignment_Date_min']).dt.days
grp_df['Waiting4Labels'] = (grp_df['Labelling_Received_Date_max'] - grp_df['Target_Date_max']).dt.days
grp_df['Waiting4Verification'] = (grp_df['Verification_Date_max'] - grp_df['Labelling_Received_Date_max']).dt.days
grp_df['Waiting4Completion'] = (grp_df['Completion/Rejection_Date_max'] - grp_df['Verification_Date_max']).dt.days
grp_df['Labelling_Duration'] = grp_df['Labelling'] + grp_df['Waiting4Labels'].fillna(0)
return grp_df
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 14
def get_model_summary(df, kind='sum'):
fig, ax = plt.subplots()
grp_df = get_model_grp_data(df)
states = ['Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling', 'Waiting4Labels', 'Waiting4Verification','Waiting4Completion']
colors = dict(zip(states, ['blue', 'red', 'green', 'yellow', 'cyan', 'violet', 'pink']))
grp_df[['AccountNumber','AccountName', 'CattleFolder/Frame',
'Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling', 'Waiting4Labels', 'Waiting4Verification','Waiting4Completion']].groupby(['AccountNumber', 'AccountName', 'CattleFolder/Frame'], as_index=False).agg(kind).set_index(['AccountNumber', 'AccountName', 'CattleFolder/Frame']).plot(kind='barh', stacked=True, ax=ax, color=colors, legend=False);
fig.legend(loc='upper right')
return fig
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 16
def get_model_hist(df, col):
grp_df = get_model_grp_data(df)
fig, ax = plt.subplots()
grp_df[col].plot(kind='hist', ax=ax, legend=True)
avg = grp_df[col].mean()
count = grp_df[col].count()
ax.axvline(avg, color='red', label=f'mean={avg}')
ax.set_title(f'{col}[ mean={avg:.2f}, count={count:.2f} ]')
return fig
# get_floating_hist(df, 'Recording_Duration')
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 17
def get_step_df(grp_df, start_step, end_step, step_name):
df_e = grp_df[['AccountNumber', 'AccountName','Assigned_sum', 'CattleFolder/Frame', 'SubFolder']].copy()
df_e['Start'] = grp_df[start_step]
df_e['End'] = grp_df[end_step]
df_e['Step'] = step_name
return df_e
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 19
def get_gantt(df):
steps = [
{'start_step': 'Recording_Date_min', 'end_step' :'Recording_Date_max', 'step_name' : 'Recording'},
{'start_step': 'Recording_Date_max', 'end_step' :'Video_Reception_Date_max', 'step_name' : 'Waiting4Video'},
{'start_step': 'Video_Reception_Date_max', 'end_step' :'Assignment_Date_min', 'step_name' : 'Waiting4Assignment'},
{'start_step': 'Assignment_Date_min', 'end_step' :'Target_Date_max', 'step_name' : 'Labelling'},
{'start_step': 'Target_Date_max', 'end_step' :'Labelling_Received_Date_max', 'step_name' : 'Waiting4Labels'},
{'start_step': 'Labelling_Received_Date_max', 'end_step' :'Verification_Date_max', 'step_name' : 'Waiting4Verification'},
{'start_step': 'Verification_Date_max', 'end_step' :'Completion/Rejection_Date_max', 'step_name' : 'Waiting4Completion'},
]
grp_df = get_model_grp_data(df)
df_concat = pd.concat(get_step_df(grp_df, start_step=step['start_step'], end_step=step['end_step'], step_name=step['step_name']) for step in steps)
df_concat['label'] = df_concat[['AccountNumber', 'AccountName', 'CattleFolder/Frame']].apply(lambda row: "_".join(row), axis=1)
df_concat.loc[df_concat['Step']=='Recording', 'Start'] = df_concat.loc[df_concat['Step']=='Recording', 'Start'] - pd.Timedelta(days=1)
# # df_concat
states = [s['step_name'] for s in steps]; # states
colors = dict(zip(states, ['blue', 'red', 'green', 'yellow', 'cyan', 'violet', 'pink']))
fig = px.timeline(data_frame=df_concat, x_start='Start', x_end='End', y='label', color='Step', color_discrete_map=colors, hover_data=['Assigned_sum', 'AccountName', 'AccountNumber'])
# fig.update_layout(legend=dict(
# orientation="h",
# ))
return fig
# %% ../../nbs/book/LabellingTracker/14_Model.ipynb 23
df = None
st.write("# Model Details")
if 'processed_df' not in st.session_state:
st.write("Please go to andon page and upload data")
else:
df = st.session_state['processed_df']
st.markdown("## Summary Model Durations")
st.markdown(" Below plot includes a summary of all the frames in different model farms. Process includes recording and sharing video everyday with non sequential sharing schedule")
with st.container(border=True):
tab_sum, tab_mean = st.tabs(['Sum', 'Mean'])
with tab_sum:
st.pyplot(get_model_summary(df))
with tab_mean:
st.pyplot(get_model_summary(df, kind='mean'))
ncols = 3
dcols = st.columns(ncols)
for i, col in enumerate(['Recording','Waiting4Video', 'Waiting4Assignment', 'Labelling_Duration', 'Waiting4Verification', 'Waiting4Completion']):
with dcols[i%ncols]:
st.pyplot(get_model_hist(df, col), use_container_width=True)
st.markdown("## Timeline")
with st.container(border=True):
st.plotly_chart(get_gantt(df), theme="streamlit", use_container_width=True)
|