# AUTOGENERATED! DO NOT EDIT! File to edit: 03a_image_archs.ipynb. # %% auto 0 __all__ = ['result_options', 'activity_options', 'col_options', 'subs', 'is_fullmatch', 'drop_tf', 'result_option', 'activity_option', 'col_option', 'size_col_option', 'title_dict', 'df', 'fig', 'col1', 'col2', 'get_results', 'get_integrated_data', 'get_filtered_data', 'get_data', 'plot_selection'] # %% 03a_image_archs.ipynb 11 import pandas as pd import plotly.express as px from fastcore.all import * import streamlit as st # %% 03a_image_archs.ipynb 12 st.set_page_config(page_title="Which Image Model is best?",layout="wide") # %% 03a_image_archs.ipynb 14 def get_results(result_option = 'original'): suffix = "" if result_option == 'original' else "-real" url_results = f"https://github.com/huggingface/pytorch-image-models/raw/main/results/results-imagenet{suffix}.csv" df_results = pd.read_csv(url_results); df_results.head() df_results['model_org'] = df_results['model'] df_results['model'] = df_results['model'].str.split('.').str[0] return df_results # %% 03a_image_archs.ipynb 16 def get_integrated_data(activity_option, result_option): df_results = get_results(result_option) url_benchmark = f"https://github.com/huggingface/pytorch-image-models/raw/main/results/benchmark-{activity_option}-amp-nhwc-pt112-cu113-rtx3090.csv" df_benchmark = pd.read_csv(url_benchmark) df_integrated = df_results.merge(df_benchmark, on='model') df_integrated['is_tensorflow_model'] = df_integrated.model.str.split('_').str[0] =='tf' df_integrated['family'] = df_integrated.model.str.removeprefix("tf_").str.removeprefix("legacy_").str.removeprefix("nf_").str.removeprefix("nf_").str.extract('^([a-z]+?(?:v2|v3)?)(?:\d|_|$)')[0].values df_integrated.loc[df_integrated.model.str.contains('in22'), 'family'] = df_integrated.loc[df_integrated.model.str.contains('in22'), 'family'] + "_in22" df_integrated.loc[df_integrated.model.str.contains('resnet.*d'), 'family'] = df_integrated.loc[df_integrated.model.str.contains('resnet.*d'), 'family'] + "d" return df_integrated[~df_integrated.model.str.endswith('gn')] # Group norm models. Why Jeremy eliminated them from analysis? # %% 03a_image_archs.ipynb 18 @st.cache_data def get_filtered_data(df_integrated, subs, is_fullmatch=False, drop_tf=True): if drop_tf: df_integrated = df_integrated[~df_integrated.is_tensorflow_model] if not subs: return df_integrated elif is_fullmatch: return df_integrated[df_integrated.family.str.fullmatch(subs)] else: return df_integrated[df_integrated.model.str.contains(subs)] # %% 03a_image_archs.ipynb 19 def get_data(col_option, activity_option, result_option, subs, is_fullmatch=False, drop_tf=True): col = "_".join([activity_option, col_option]) df_integrated = get_integrated_data(activity_option, result_option) df_integrated = get_filtered_data(df_integrated, subs, is_fullmatch=is_fullmatch, drop_tf=drop_tf) df_integrated['secs'] =1./df_integrated[col] return df_integrated # %% 03a_image_archs.ipynb 20 def plot_selection(df, title, col_option, activity_option, w=1000, h=800): size_col = "_".join([activity_option, col_option]) return px.scatter(df, width=w, height=h, size=df[size_col]**2,trendline="ols", trendline_options={'log_x':True}, title=title, x="secs",log_x=True, y='top1', log_y=True, color="family", hover_name='model_org', hover_data=[size_col]) # %% 03a_image_archs.ipynb 21 result_options = ['original', 'real'] #result = 'real' activity_options = ['train', 'infer'] col_options = ['samples_per_sec', 'step_time', 'batch_size', 'img_size', 'gmacs', 'macts'] subs = '^re[sg]netd?|beit|convnext|levit|efficient|vit|vgg|swin' is_fullmatch = False drop_tf = False subs = 'levit|resnetd?|regnetx|vgg|convnext.*|efficientnetv2|beit|swin' is_fullmatch = True result_option = result_options[0] activity_option = activity_options[1] col_option = col_options[0] size_col_option = col_options[3] title_dict = dict(zip(activity_options, ['Training', "Inference"])) df = get_data(col_option, activity_option, result_option, subs, is_fullmatch=is_fullmatch, drop_tf=drop_tf) fig = plot_selection(df, title_dict[activity_option], size_col_option, activity_option) # %% 03a_image_archs.ipynb 25 st.title("Which Image Model is best?") col1, col2 = st.columns([1,3]) with col1: st.header("Settings") result_option = st.selectbox("Please choose dataset", result_options) activity_option = st.selectbox("Please choose activity", activity_options) subs = st.text_input("Subs", value='levit|resnetd?|regnetx|vgg|convnext.*|efficientnetv2|beit|swin') is_fullmatch = st.checkbox("Is fullmatch", value=True) drop_tf = st.checkbox("Drop Tensorflow Models", value=False) col_option = st.selectbox("Please choose col_option", col_options) size_col_option = st.selectbox("Please choose sizing col_option", col_options, index=3) with col2: title_dict = dict(zip(activity_options, ['Training', "Inference"])) df = get_data(col_option, activity_option, result_option, subs, is_fullmatch=is_fullmatch, drop_tf=drop_tf) fig = plot_selection(df, None, size_col_option, activity_option, h=500, w=1000) # Plot! st.header(title_dict[activity_option]) st.plotly_chart(fig, use_container_width=True, height=500)