rahuketu86's picture
Upload app.py with huggingface_hub
2d71a8e
# AUTOGENERATED! DO NOT EDIT! File to edit: 02d_deployment.ipynb.
# %% auto 0
__all__ = ['uname', 'dsname', 'url', 'model_root', 'model_repo', 'learn', 'examples', 'labels', 'article', 'demo', 'predict']
# %% 02d_deployment.ipynb 13
from huggingface_hub import from_pretrained_fastai
from fastai.vision.all import *
import gradio as gr
# %% 02d_deployment.ipynb 18
uname = "rahuketu86"
dsname = "PandemicSafety"
url = "https://zealmaker.com/curations/courses/fastai_dl1/02d_deployment"
model_root = f"Model-{dsname}"
model_repo = f"{uname}/{model_root}"; model_repo
learn = from_pretrained_fastai(model_repo)
# %% 02d_deployment.ipynb 23
examples = list(get_image_files(".").map(lambda e : str(e))); examples
# %% 02d_deployment.ipynb 25
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return dict(zip(labels, map(float, probs)))
# %% 02d_deployment.ipynb 26
article="<p style='text-align: center'><a href='https://zealmaker.com/curations/courses/fastai_dl1/02d_deployment' target='_blank'>zealmaker.com</a></p>"
demo = gr.Interface(fn=predict,
inputs=gr.inputs.Image(shape=(512, 512)),
outputs=gr.outputs.Label(num_top_classes=2),
title = dsname,
article=article,
interpretation='default',
examples = examples,
enable_queue=True
);demo
demo.launch()