Spaces:
Running
Running
File size: 8,897 Bytes
fcc02a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
from torch import nn
import torch.nn.functional as F
import torch
from torchvision import models
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
def tensor_size(tensor):
channels = tensor.shape[1]
height = tensor.shape[2]
width = tensor.shape[3]
return channels * height * width
class ContentLoss(nn.Module):
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'):
super(ContentLoss, self).__init__()
self.single_target = single_target
self.device = device
self.loss = None
def forward(self, stacked_input):
if self.single_target:
split_size = stacked_input.size()[0] // 2
pred_layer, target_layer = torch.split(stacked_input, split_size, dim=0)
else:
split_size = stacked_input.size()[0] // 3
pred_layer, _, target_layer = torch.split(stacked_input, split_size, dim=0)
content_size = tensor_size(pred_layer)
# Define the separate loss function
def separated_loss(y_pred, y_true):
y_pred = y_pred.float()
y_true = y_true.float()
diff = torch.abs(y_pred - y_true)
l2 = torch.sum(diff ** 2, dim=[1, 2, 3], keepdim=True) / 2.0
return 2. * l2 / content_size
# Calculate itemized loss
pred_itemized_loss = separated_loss(pred_layer, target_layer)
# check if is nan
if torch.isnan(pred_itemized_loss).any():
print('pred_itemized_loss is nan')
# Calculate the mean of itemized loss
loss = torch.mean(pred_itemized_loss, dim=(1, 2, 3), keepdim=True)
self.loss = loss
return stacked_input
def convert_to_gram_matrix(inputs):
inputs = inputs.float()
shape = inputs.size()
batch, filters, height, width = shape[0], shape[1], shape[2], shape[3]
size = height * width * filters
feats = inputs.view(batch, filters, height * width)
feats_t = feats.transpose(1, 2)
grams_raw = torch.matmul(feats, feats_t)
gram_matrix = grams_raw / size
return gram_matrix
######################################################################
# Now the style loss module looks almost exactly like the content loss
# module. The style distance is also computed using the mean square
# error between :math:`G_{XL}` and :math:`G_{SL}`.
#
class StyleLoss(nn.Module):
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'):
super(StyleLoss, self).__init__()
self.single_target = single_target
self.device = device
def forward(self, stacked_input):
input_dtype = stacked_input.dtype
stacked_input = stacked_input.float()
if self.single_target:
split_size = stacked_input.size()[0] // 2
preds, style_target = torch.split(stacked_input, split_size, dim=0)
else:
split_size = stacked_input.size()[0] // 3
preds, style_target, _ = torch.split(stacked_input, split_size, dim=0)
def separated_loss(y_pred, y_true):
gram_size = y_true.size(1) * y_true.size(2)
sum_axis = (1, 2)
diff = torch.abs(y_pred - y_true)
raw_loss = torch.sum(diff ** 2, dim=sum_axis, keepdim=True)
return raw_loss / gram_size
target_grams = convert_to_gram_matrix(style_target)
pred_grams = convert_to_gram_matrix(preds)
itemized_loss = separated_loss(pred_grams, target_grams)
# check if is nan
if torch.isnan(itemized_loss).any():
print('itemized_loss is nan')
# reshape itemized loss to be (batch, 1, 1, 1)
itemized_loss = torch.unsqueeze(itemized_loss, dim=1)
# gram_size = (tf.shape(target_grams)[1] * tf.shape(target_grams)[2])
loss = torch.mean(itemized_loss, dim=(1, 2), keepdim=True)
self.loss = loss.to(input_dtype).float()
return stacked_input.to(input_dtype)
# create a module to normalize input image so we can easily put it in a
# ``nn.Sequential``
class Normalization(nn.Module):
def __init__(self, device, dtype=torch.float32):
super(Normalization, self).__init__()
mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).to(device)
self.dtype = dtype
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, stacked_input):
# cast to float 32 if not already # only necessary when processing gram matrix
# if stacked_input.dtype != torch.float32:
# stacked_input = stacked_input.float()
# remove alpha channel if it exists
if stacked_input.shape[1] == 4:
stacked_input = stacked_input[:, :3, :, :]
# normalize to min and max of 0 - 1
in_min = torch.min(stacked_input)
in_max = torch.max(stacked_input)
# norm_stacked_input = (stacked_input - in_min) / (in_max - in_min)
# return (norm_stacked_input - self.mean) / self.std
return ((stacked_input - self.mean) / self.std).to(self.dtype)
class OutputLayer(nn.Module):
def __init__(self, name='output_layer'):
super(OutputLayer, self).__init__()
self.name = name
self.tensor = None
def forward(self, stacked_input):
self.tensor = stacked_input
return stacked_input
def get_style_model_and_losses(
single_target=True, # false has 3 targets, dont remember why i added this initially, this is old code
device='cuda' if torch.cuda.is_available() else 'cpu',
output_layer_name=None,
dtype=torch.float32
):
# content_layers = ['conv_4']
# style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
content_layers = ['conv2_2', 'conv3_2', 'conv4_2']
style_layers = ['conv2_1', 'conv3_1', 'conv4_1']
cnn = models.vgg19(pretrained=True).features.to(device, dtype=dtype).eval()
# set all weights in the model to our dtype
# for layer in cnn.children():
# layer.to(dtype=dtype)
# normalization module
normalization = Normalization(device, dtype=dtype).to(device)
# just in order to have an iterable access to or list of content/style
# losses
content_losses = []
style_losses = []
# assuming that ``cnn`` is a ``nn.Sequential``, so we make a new ``nn.Sequential``
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
block = 1
children = list(cnn.children())
output_layer = None
for layer in children:
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv{block}_{i}_raw'
elif isinstance(layer, nn.ReLU):
# name = 'relu_{}'.format(i)
name = f'conv{block}_{i}' # target this
# The in-place version doesn't play very nicely with the ``ContentLoss``
# and ``StyleLoss`` we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
block += 1
i = 0
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
content_loss = ContentLoss(single_target=single_target, device=device)
model.add_module("content_loss_{}_{}".format(block, i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
style_loss = StyleLoss(single_target=single_target, device=device)
model.add_module("style_loss_{}_{}".format(block, i), style_loss)
style_losses.append(style_loss)
if output_layer_name is not None and name == output_layer_name:
output_layer = OutputLayer(name)
model.add_module("output_layer_{}_{}".format(block, i), output_layer)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss) or isinstance(model[i], OutputLayer):
break
model = model[:(i + 1)]
model.to(dtype=dtype)
return model, style_losses, content_losses, output_layer
|