Spaces:
Running
Running
File size: 14,806 Bytes
fcc02a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
#######################################################
# Convert Diffusers Flux/Flex to diffusion model ComfyUI safetensors file
# This will only have the transformer weights, not the TEs and VAE
# You can save the transformer weights as bf16 or 8-bit with the --do_8_bit flag
# You can also save with scaled 8-bit using the --do_8bit_scaled flag
#
# Call like this for 8-bit transformer weights with stochastic rounding:
# python convert_diffusers_to_comfy_transformer_only.py /path/to/diffusers/checkpoint /output/path/my_finetune.safetensors --do_8_bit
#
# Call like this for 8-bit transformer weights with scaling:
# python convert_diffusers_to_comfy_transformer_only.py /path/to/diffusers/checkpoint /output/path/my_finetune.safetensors --do_8bit_scaled
#
# Call like this for bf16 transformer weights:
# python convert_diffusers_to_comfy_transformer_only.py /path/to/diffusers/checkpoint /output/path/my_finetune.safetensors
#
# Output should go in ComfyUI/models/diffusion_models/
#
#######################################################
import argparse
from datetime import date
import json
import os
from pathlib import Path
import safetensors
import safetensors.torch
import torch
import tqdm
from collections import OrderedDict
parser = argparse.ArgumentParser()
parser.add_argument("diffusers_path", type=str,
help="Path to the original Flux diffusers folder.")
parser.add_argument("flux_path", type=str,
help="Output path for the Flux safetensors file.")
parser.add_argument("--do_8_bit", action="store_true",
help="Use 8-bit weights with stochastic rounding instead of bf16.")
parser.add_argument("--do_8bit_scaled", action="store_true",
help="Use scaled 8-bit weights instead of bf16.")
args = parser.parse_args()
flux_path = Path(args.flux_path)
diffusers_path = Path(args.diffusers_path)
if os.path.exists(os.path.join(diffusers_path, "transformer")):
diffusers_path = Path(os.path.join(diffusers_path, "transformer"))
do_8_bit = args.do_8_bit
do_8bit_scaled = args.do_8bit_scaled
# Don't allow both flags to be active simultaneously
if do_8_bit and do_8bit_scaled:
print("Error: Cannot use both --do_8_bit and --do_8bit_scaled at the same time.")
exit()
if not os.path.exists(flux_path.parent):
os.makedirs(flux_path.parent)
if not diffusers_path.exists():
print(f"Error: Missing transformer folder: {diffusers_path}")
exit()
original_json_path = Path.joinpath(
diffusers_path, "diffusion_pytorch_model.safetensors.index.json")
if not original_json_path.exists():
print(f"Error: Missing transformer index json: {original_json_path}")
exit()
with open(original_json_path, "r", encoding="utf-8") as f:
original_json = json.load(f)
diffusers_map = {
"time_in.in_layer.weight": [
"time_text_embed.timestep_embedder.linear_1.weight",
],
"time_in.in_layer.bias": [
"time_text_embed.timestep_embedder.linear_1.bias",
],
"time_in.out_layer.weight": [
"time_text_embed.timestep_embedder.linear_2.weight",
],
"time_in.out_layer.bias": [
"time_text_embed.timestep_embedder.linear_2.bias",
],
"vector_in.in_layer.weight": [
"time_text_embed.text_embedder.linear_1.weight",
],
"vector_in.in_layer.bias": [
"time_text_embed.text_embedder.linear_1.bias",
],
"vector_in.out_layer.weight": [
"time_text_embed.text_embedder.linear_2.weight",
],
"vector_in.out_layer.bias": [
"time_text_embed.text_embedder.linear_2.bias",
],
"guidance_in.in_layer.weight": [
"time_text_embed.guidance_embedder.linear_1.weight",
],
"guidance_in.in_layer.bias": [
"time_text_embed.guidance_embedder.linear_1.bias",
],
"guidance_in.out_layer.weight": [
"time_text_embed.guidance_embedder.linear_2.weight",
],
"guidance_in.out_layer.bias": [
"time_text_embed.guidance_embedder.linear_2.bias",
],
"txt_in.weight": [
"context_embedder.weight",
],
"txt_in.bias": [
"context_embedder.bias",
],
"img_in.weight": [
"x_embedder.weight",
],
"img_in.bias": [
"x_embedder.bias",
],
"double_blocks.().img_mod.lin.weight": [
"norm1.linear.weight",
],
"double_blocks.().img_mod.lin.bias": [
"norm1.linear.bias",
],
"double_blocks.().txt_mod.lin.weight": [
"norm1_context.linear.weight",
],
"double_blocks.().txt_mod.lin.bias": [
"norm1_context.linear.bias",
],
"double_blocks.().img_attn.qkv.weight": [
"attn.to_q.weight",
"attn.to_k.weight",
"attn.to_v.weight",
],
"double_blocks.().img_attn.qkv.bias": [
"attn.to_q.bias",
"attn.to_k.bias",
"attn.to_v.bias",
],
"double_blocks.().txt_attn.qkv.weight": [
"attn.add_q_proj.weight",
"attn.add_k_proj.weight",
"attn.add_v_proj.weight",
],
"double_blocks.().txt_attn.qkv.bias": [
"attn.add_q_proj.bias",
"attn.add_k_proj.bias",
"attn.add_v_proj.bias",
],
"double_blocks.().img_attn.norm.query_norm.scale": [
"attn.norm_q.weight",
],
"double_blocks.().img_attn.norm.key_norm.scale": [
"attn.norm_k.weight",
],
"double_blocks.().txt_attn.norm.query_norm.scale": [
"attn.norm_added_q.weight",
],
"double_blocks.().txt_attn.norm.key_norm.scale": [
"attn.norm_added_k.weight",
],
"double_blocks.().img_mlp.0.weight": [
"ff.net.0.proj.weight",
],
"double_blocks.().img_mlp.0.bias": [
"ff.net.0.proj.bias",
],
"double_blocks.().img_mlp.2.weight": [
"ff.net.2.weight",
],
"double_blocks.().img_mlp.2.bias": [
"ff.net.2.bias",
],
"double_blocks.().txt_mlp.0.weight": [
"ff_context.net.0.proj.weight",
],
"double_blocks.().txt_mlp.0.bias": [
"ff_context.net.0.proj.bias",
],
"double_blocks.().txt_mlp.2.weight": [
"ff_context.net.2.weight",
],
"double_blocks.().txt_mlp.2.bias": [
"ff_context.net.2.bias",
],
"double_blocks.().img_attn.proj.weight": [
"attn.to_out.0.weight",
],
"double_blocks.().img_attn.proj.bias": [
"attn.to_out.0.bias",
],
"double_blocks.().txt_attn.proj.weight": [
"attn.to_add_out.weight",
],
"double_blocks.().txt_attn.proj.bias": [
"attn.to_add_out.bias",
],
"single_blocks.().modulation.lin.weight": [
"norm.linear.weight",
],
"single_blocks.().modulation.lin.bias": [
"norm.linear.bias",
],
"single_blocks.().linear1.weight": [
"attn.to_q.weight",
"attn.to_k.weight",
"attn.to_v.weight",
"proj_mlp.weight",
],
"single_blocks.().linear1.bias": [
"attn.to_q.bias",
"attn.to_k.bias",
"attn.to_v.bias",
"proj_mlp.bias",
],
"single_blocks.().linear2.weight": [
"proj_out.weight",
],
"single_blocks.().norm.query_norm.scale": [
"attn.norm_q.weight",
],
"single_blocks.().norm.key_norm.scale": [
"attn.norm_k.weight",
],
"single_blocks.().linear2.weight": [
"proj_out.weight",
],
"single_blocks.().linear2.bias": [
"proj_out.bias",
],
"final_layer.linear.weight": [
"proj_out.weight",
],
"final_layer.linear.bias": [
"proj_out.bias",
],
"final_layer.adaLN_modulation.1.weight": [
"norm_out.linear.weight",
],
"final_layer.adaLN_modulation.1.bias": [
"norm_out.linear.bias",
],
}
def is_in_diffusers_map(k):
for values in diffusers_map.values():
for value in values:
if k.endswith(value):
return True
return False
diffusers = {k: Path.joinpath(diffusers_path, v)
for k, v in original_json["weight_map"].items() if is_in_diffusers_map(k)}
original_safetensors = set(diffusers.values())
# determine the number of transformer blocks
transformer_blocks = 0
single_transformer_blocks = 0
for key in diffusers.keys():
print(key)
if key.startswith("transformer_blocks."):
print(key)
block = int(key.split(".")[1])
if block >= transformer_blocks:
transformer_blocks = block + 1
elif key.startswith("single_transformer_blocks."):
block = int(key.split(".")[1])
if block >= single_transformer_blocks:
single_transformer_blocks = block + 1
print(f"Transformer blocks: {transformer_blocks}")
print(f"Single transformer blocks: {single_transformer_blocks}")
for file in original_safetensors:
if not file.exists():
print(f"Error: Missing transformer safetensors file: {file}")
exit()
original_safetensors = {f: safetensors.safe_open(
f, framework="pt", device="cpu") for f in original_safetensors}
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
flux_values = {}
for b in range(transformer_blocks):
for key, weights in diffusers_map.items():
if key.startswith("double_blocks."):
block_prefix = f"transformer_blocks.{b}."
found = True
for weight in weights:
if not (f"{block_prefix}{weight}" in diffusers):
found = False
if found:
flux_values[key.replace("()", f"{b}")] = [
f"{block_prefix}{weight}" for weight in weights]
for b in range(single_transformer_blocks):
for key, weights in diffusers_map.items():
if key.startswith("single_blocks."):
block_prefix = f"single_transformer_blocks.{b}."
found = True
for weight in weights:
if not (f"{block_prefix}{weight}" in diffusers):
found = False
if found:
flux_values[key.replace("()", f"{b}")] = [
f"{block_prefix}{weight}" for weight in weights]
for key, weights in diffusers_map.items():
if not (key.startswith("double_blocks.") or key.startswith("single_blocks.")):
found = True
for weight in weights:
if not (f"{weight}" in diffusers):
found = False
if found:
flux_values[key] = [f"{weight}" for weight in weights]
flux = {}
for key, values in tqdm.tqdm(flux_values.items()):
if len(values) == 1:
flux[key] = original_safetensors[diffusers[values[0]]
].get_tensor(values[0]).to("cpu")
else:
flux[key] = torch.cat(
[
original_safetensors[diffusers[value]
].get_tensor(value).to("cpu")
for value in values
]
)
if "norm_out.linear.weight" in diffusers:
flux["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(
original_safetensors[diffusers["norm_out.linear.weight"]].get_tensor(
"norm_out.linear.weight").to("cpu")
)
if "norm_out.linear.bias" in diffusers:
flux["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(
original_safetensors[diffusers["norm_out.linear.bias"]].get_tensor(
"norm_out.linear.bias").to("cpu")
)
def stochastic_round_to(tensor, dtype=torch.float8_e4m3fn):
# Define the float8 range
min_val = torch.finfo(dtype).min
max_val = torch.finfo(dtype).max
# Clip values to float8 range
tensor = torch.clamp(tensor, min_val, max_val)
# Convert to float32 for calculations
tensor = tensor.float()
# Get the nearest representable float8 values
lower = torch.floor(tensor * 256) / 256
upper = torch.ceil(tensor * 256) / 256
# Calculate the probability of rounding up
prob = (tensor - lower) / (upper - lower)
# Generate random values for stochastic rounding
rand = torch.rand_like(tensor)
# Perform stochastic rounding
rounded = torch.where(rand < prob, upper, lower)
# Convert back to float8
return rounded.to(dtype)
# List of keys that should not be scaled (usually embedding layers and biases)
blacklist = []
for key in flux.keys():
if not key.endswith(".weight") or "embed" in key:
blacklist.append(key)
# Function to scale weights for 8-bit quantization
def scale_weights_to_8bit(tensor, max_value=416.0, dtype=torch.float8_e4m3fn):
# Get the limits of the dtype
min_val = torch.finfo(dtype).min
max_val = torch.finfo(dtype).max
# Only process 2D tensors that are not in the blacklist
if tensor.dim() == 2:
# Calculate the scaling factor
abs_max = torch.max(torch.abs(tensor))
scale = abs_max / max_value
# Scale the tensor and clip to float8 range
scaled_tensor = (tensor / scale).clip(min=min_val, max=max_val).to(dtype)
return scaled_tensor, scale
else:
# For tensors that shouldn't be scaled, just convert to float8
return tensor.clip(min=min_val, max=max_val).to(dtype), None
# set all the keys to appropriate dtype
if do_8_bit:
print("Converting to 8-bit with stochastic rounding...")
for key in flux.keys():
flux[key] = stochastic_round_to(
flux[key], torch.float8_e4m3fn).to('cpu')
elif do_8bit_scaled:
print("Converting to scaled 8-bit...")
scales = {}
for key in tqdm.tqdm(flux.keys()):
if key.endswith(".weight") and key not in blacklist:
flux[key], scale = scale_weights_to_8bit(flux[key])
if scale is not None:
scale_key = key[:-len(".weight")] + ".scale_weight"
scales[scale_key] = scale
else:
# For non-weight tensors or blacklisted ones, just convert without scaling
min_val = torch.finfo(torch.float8_e4m3fn).min
max_val = torch.finfo(torch.float8_e4m3fn).max
flux[key] = flux[key].clip(min=min_val, max=max_val).to(torch.float8_e4m3fn).to('cpu')
# Add all the scales to the flux dictionary
flux.update(scales)
# Add a marker tensor to indicate this is a scaled fp8 model
flux["scaled_fp8"] = torch.tensor([]).to(torch.float8_e4m3fn)
else:
print("Converting to bfloat16...")
for key in flux.keys():
flux[key] = flux[key].clone().to('cpu', torch.bfloat16)
meta = OrderedDict()
meta['format'] = 'pt'
# date format like 2024-08-01 YYYY-MM-DD
meta['modelspec.date'] = date.today().strftime("%Y-%m-%d")
os.makedirs(os.path.dirname(flux_path), exist_ok=True)
print(f"Saving to {flux_path}")
safetensors.torch.save_file(flux, flux_path, metadata=meta)
print("Done.") |