ai-toolkit / toolkit /train_tools.py
rahul7star's picture
boilerplate
fcc02a2 verified
raw
history blame
27.4 kB
import argparse
import hashlib
import json
import os
import time
from typing import TYPE_CHECKING, Union, List
import sys
from diffusers import (
DDPMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler
)
import torch
import re
from transformers import T5Tokenizer, T5EncoderModel, UMT5EncoderModel
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"
UNET_ATTENTION_TIME_EMBED_DIM = 256 # XL
TEXT_ENCODER_2_PROJECTION_DIM = 1280
UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM = 2816
def get_torch_dtype(dtype_str):
# if it is a torch dtype, return it
if isinstance(dtype_str, torch.dtype):
return dtype_str
if dtype_str == "float" or dtype_str == "fp32" or dtype_str == "single" or dtype_str == "float32":
return torch.float
if dtype_str == "fp16" or dtype_str == "half" or dtype_str == "float16":
return torch.float16
if dtype_str == "bf16" or dtype_str == "bfloat16":
return torch.bfloat16
if dtype_str == "8bit" or dtype_str == "e4m3fn" or dtype_str == "float8":
return torch.float8_e4m3fn
return dtype_str
def replace_filewords_prompt(prompt, args: argparse.Namespace):
# if name_replace attr in args (may not be)
if hasattr(args, "name_replace") and args.name_replace is not None:
# replace [name] to args.name_replace
prompt = prompt.replace("[name]", args.name_replace)
if hasattr(args, "prepend") and args.prepend is not None:
# prepend to every item in prompt file
prompt = args.prepend + ' ' + prompt
if hasattr(args, "append") and args.append is not None:
# append to every item in prompt file
prompt = prompt + ' ' + args.append
return prompt
def replace_filewords_in_dataset_group(dataset_group, args: argparse.Namespace):
# if name_replace attr in args (may not be)
if hasattr(args, "name_replace") and args.name_replace is not None:
if not len(dataset_group.image_data) > 0:
# throw error
raise ValueError("dataset_group.image_data is empty")
for key in dataset_group.image_data:
dataset_group.image_data[key].caption = dataset_group.image_data[key].caption.replace(
"[name]", args.name_replace)
return dataset_group
def get_seeds_from_latents(latents):
# latents shape = (batch_size, 4, height, width)
# for speed we only use 8x8 slice of the first channel
seeds = []
# split batch up
for i in range(latents.shape[0]):
# use only first channel, multiply by 255 and convert to int
tensor = latents[i, 0, :, :] * 255.0 # shape = (height, width)
# slice 8x8
tensor = tensor[:8, :8]
# clip to 0-255
tensor = torch.clamp(tensor, 0, 255)
# convert to 8bit int
tensor = tensor.to(torch.uint8)
# convert to bytes
tensor_bytes = tensor.cpu().numpy().tobytes()
# hash
hash_object = hashlib.sha256(tensor_bytes)
# get hex
hex_dig = hash_object.hexdigest()
# convert to int
seed = int(hex_dig, 16) % (2 ** 32)
# append
seeds.append(seed)
return seeds
def get_noise_from_latents(latents):
seed_list = get_seeds_from_latents(latents)
noise = []
for seed in seed_list:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
noise.append(torch.randn_like(latents[0]))
return torch.stack(noise)
# mix 0 is completely noise mean, mix 1 is completely target mean
def match_noise_to_target_mean_offset(noise, target, mix=0.5, dim=None):
dim = dim or (1, 2, 3)
# reduce mean of noise on dim 2, 3, keeping 0 and 1 intact
noise_mean = noise.mean(dim=dim, keepdim=True)
target_mean = target.mean(dim=dim, keepdim=True)
new_noise_mean = mix * target_mean + (1 - mix) * noise_mean
noise = noise - noise_mean + new_noise_mean
return noise
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
def apply_noise_offset(noise, noise_offset):
if noise_offset is None or (noise_offset < 0.000001 and noise_offset > -0.000001):
return noise
if len(noise.shape) > 4:
raise ValueError("Applying noise offset not supported for video models at this time.")
noise = noise + noise_offset * torch.randn((noise.shape[0], noise.shape[1], 1, 1), device=noise.device)
return noise
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import PromptEmbeds
def concat_prompt_embeddings(
unconditional: 'PromptEmbeds',
conditional: 'PromptEmbeds',
n_imgs: int=0,
):
from toolkit.stable_diffusion_model import PromptEmbeds
text_embeds = torch.cat(
[unconditional.text_embeds, conditional.text_embeds]
).repeat_interleave(n_imgs, dim=0)
pooled_embeds = None
if unconditional.pooled_embeds is not None and conditional.pooled_embeds is not None:
pooled_embeds = torch.cat(
[unconditional.pooled_embeds, conditional.pooled_embeds]
).repeat_interleave(n_imgs, dim=0)
return PromptEmbeds([text_embeds, pooled_embeds])
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]
if TYPE_CHECKING:
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
def text_tokenize(
tokenizer: 'CLIPTokenizer',
prompts: list[str],
truncate: bool = True,
max_length: int = None,
max_length_multiplier: int = 4,
):
# allow fo up to 4x the max length for long prompts
if max_length is None:
if truncate:
max_length = tokenizer.model_max_length
else:
# allow up to 4x the max length for long prompts
max_length = tokenizer.model_max_length * max_length_multiplier
input_ids = tokenizer(
prompts,
padding='max_length',
max_length=max_length,
truncation=True,
return_tensors="pt",
).input_ids
if truncate or max_length == tokenizer.model_max_length:
return input_ids
else:
# remove additional padding
num_chunks = input_ids.shape[1] // tokenizer.model_max_length
chunks = torch.chunk(input_ids, chunks=num_chunks, dim=1)
# New list to store non-redundant chunks
non_redundant_chunks = []
for chunk in chunks:
if not chunk.eq(chunk[0, 0]).all(): # Check if all elements in the chunk are the same as the first element
non_redundant_chunks.append(chunk)
input_ids = torch.cat(non_redundant_chunks, dim=1)
return input_ids
# https://github.com/huggingface/diffusers/blob/78922ed7c7e66c20aa95159c7b7a6057ba7d590d/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L334-L348
def text_encode_xl(
text_encoder: Union['CLIPTextModel', 'CLIPTextModelWithProjection'],
tokens: torch.FloatTensor,
num_images_per_prompt: int = 1,
max_length: int = 77, # not sure what default to put here, always pass one?
truncate: bool = True,
):
if truncate:
# normal short prompt 77 tokens max
prompt_embeds = text_encoder(
tokens.to(text_encoder.device), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2] # always penultimate layer
else:
# handle long prompts
prompt_embeds_list = []
tokens = tokens.to(text_encoder.device)
pooled_prompt_embeds = None
for i in range(0, tokens.shape[-1], max_length):
# todo run it through the in a single batch
section_tokens = tokens[:, i: i + max_length]
embeds = text_encoder(section_tokens, output_hidden_states=True)
pooled_prompt_embed = embeds[0]
if pooled_prompt_embeds is None:
# we only want the first ( I think??)
pooled_prompt_embeds = pooled_prompt_embed
prompt_embed = embeds.hidden_states[-2] # always penultimate layer
prompt_embeds_list.append(prompt_embed)
prompt_embeds = torch.cat(prompt_embeds_list, dim=1)
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
return prompt_embeds, pooled_prompt_embeds
def encode_prompts_xl(
tokenizers: list['CLIPTokenizer'],
text_encoders: list[Union['CLIPTextModel', 'CLIPTextModelWithProjection']],
prompts: list[str],
prompts2: Union[list[str], None],
num_images_per_prompt: int = 1,
use_text_encoder_1: bool = True, # sdxl
use_text_encoder_2: bool = True, # sdxl
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
# text_encoder and text_encoder_2's penuultimate layer's output
text_embeds_list = []
pooled_text_embeds = None # always text_encoder_2's pool
if prompts2 is None:
prompts2 = prompts
for idx, (tokenizer, text_encoder) in enumerate(zip(tokenizers, text_encoders)):
# todo, we are using a blank string to ignore that encoder for now.
# find a better way to do this (zeroing?, removing it from the unet?)
prompt_list_to_use = prompts if idx == 0 else prompts2
if idx == 0 and not use_text_encoder_1:
prompt_list_to_use = ["" for _ in prompts]
if idx == 1 and not use_text_encoder_2:
prompt_list_to_use = ["" for _ in prompts]
if dropout_prob > 0.0:
# randomly drop out prompts
prompt_list_to_use = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompt_list_to_use
]
text_tokens_input_ids = text_tokenize(tokenizer, prompt_list_to_use, truncate=truncate, max_length=max_length)
# set the max length for the next one
if idx == 0:
max_length = text_tokens_input_ids.shape[-1]
text_embeds, pooled_text_embeds = text_encode_xl(
text_encoder, text_tokens_input_ids, num_images_per_prompt, max_length=tokenizer.model_max_length,
truncate=truncate
)
text_embeds_list.append(text_embeds)
bs_embed = pooled_text_embeds.shape[0]
pooled_text_embeds = pooled_text_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return torch.concat(text_embeds_list, dim=-1), pooled_text_embeds
def encode_prompts_sd3(
tokenizers: list['CLIPTokenizer'],
text_encoders: list[Union['CLIPTextModel', 'CLIPTextModelWithProjection', T5EncoderModel]],
prompts: list[str],
num_images_per_prompt: int = 1,
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
pipeline = None,
):
text_embeds_list = []
pooled_text_embeds = None # always text_encoder_2's pool
prompt_2 = prompts
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
prompt_3 = prompts
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
device = text_encoders[0].device
prompt_embed, pooled_prompt_embed = pipeline._get_clip_prompt_embeds(
prompt=prompts,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=None,
clip_model_index=0,
)
prompt_2_embed, pooled_prompt_2_embed = pipeline._get_clip_prompt_embeds(
prompt=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=None,
clip_model_index=1,
)
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
t5_prompt_embed = pipeline._get_t5_prompt_embeds(
prompt=prompt_3,
num_images_per_prompt=num_images_per_prompt,
device=device
)
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
return prompt_embeds, pooled_prompt_embeds
# ref for long prompts https://github.com/huggingface/diffusers/issues/2136
def text_encode(text_encoder: 'CLIPTextModel', tokens, truncate: bool = True, max_length=None):
if max_length is None and not truncate:
raise ValueError("max_length must be set if truncate is True")
try:
tokens = tokens.to(text_encoder.device)
except Exception as e:
print(e)
print("tokens.device", tokens.device)
print("text_encoder.device", text_encoder.device)
raise e
if truncate:
return text_encoder(tokens)[0]
else:
# handle long prompts
prompt_embeds_list = []
for i in range(0, tokens.shape[-1], max_length):
prompt_embeds = text_encoder(tokens[:, i: i + max_length])[0]
prompt_embeds_list.append(prompt_embeds)
return torch.cat(prompt_embeds_list, dim=1)
def encode_prompts(
tokenizer: 'CLIPTokenizer',
text_encoder: 'CLIPTextModel',
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
):
if max_length is None:
max_length = tokenizer.model_max_length
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
text_tokens = text_tokenize(tokenizer, prompts, truncate=truncate, max_length=max_length)
text_embeddings = text_encode(text_encoder, text_tokens, truncate=truncate, max_length=max_length)
return text_embeddings
def encode_prompts_pixart(
tokenizer: 'T5Tokenizer',
text_encoder: 'T5EncoderModel',
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
):
if max_length is None:
# See Section 3.1. of the paper.
max_length = 120
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
text_inputs = tokenizer(
prompts,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_length - 1: -1])
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(text_encoder.device)
text_input_ids = text_input_ids.to(text_encoder.device)
prompt_embeds = text_encoder(text_input_ids, attention_mask=prompt_attention_mask)
return prompt_embeds.last_hidden_state, prompt_attention_mask
def encode_prompts_auraflow(
tokenizer: 'T5Tokenizer',
text_encoder: 'UMT5EncoderModel',
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
):
if max_length is None:
max_length = 256
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
device = text_encoder.device
text_inputs = tokenizer(
prompts,
truncation=True,
max_length=max_length,
padding="max_length",
return_tensors="pt",
)
text_input_ids = text_inputs["input_ids"]
untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_length - 1: -1])
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
prompt_embeds = text_encoder(**text_inputs)[0]
prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
prompt_embeds = prompt_embeds * prompt_attention_mask
return prompt_embeds, prompt_attention_mask
def encode_prompts_flux(
tokenizer: List[Union['CLIPTokenizer','T5Tokenizer']],
text_encoder: List[Union['CLIPTextModel', 'T5EncoderModel']],
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
attn_mask: bool = False,
):
if max_length is None:
max_length = 512
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
device = text_encoder[0].device
dtype = text_encoder[0].dtype
batch_size = len(prompts)
# clip
text_inputs = tokenizer[0](
prompts,
padding="max_length",
max_length=tokenizer[0].model_max_length,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder[0](text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
pooled_prompt_embeds = prompt_embeds.pooler_output
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=dtype, device=device)
# T5
text_inputs = tokenizer[1](
prompts,
padding="max_length",
max_length=max_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder[1](text_input_ids.to(device), output_hidden_states=False)[0]
dtype = text_encoder[1].dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
if attn_mask:
prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
prompt_embeds = prompt_embeds * prompt_attention_mask.to(dtype=prompt_embeds.dtype, device=prompt_embeds.device)
return prompt_embeds, pooled_prompt_embeds
# for XL
def get_add_time_ids(
height: int,
width: int,
dynamic_crops: bool = False,
dtype: torch.dtype = torch.float32,
):
if dynamic_crops:
# random float scale between 1 and 3
random_scale = torch.rand(1).item() * 2 + 1
original_size = (int(height * random_scale), int(width * random_scale))
# random position
crops_coords_top_left = (
torch.randint(0, original_size[0] - height, (1,)).item(),
torch.randint(0, original_size[1] - width, (1,)).item(),
)
target_size = (height, width)
else:
original_size = (height, width)
crops_coords_top_left = (0, 0)
target_size = (height, width)
# this is expected as 6
add_time_ids = list(original_size + crops_coords_top_left + target_size)
# this is expected as 2816
passed_add_embed_dim = (
UNET_ATTENTION_TIME_EMBED_DIM * len(add_time_ids) # 256 * 6
+ TEXT_ENCODER_2_PROJECTION_DIM # + 1280
)
if passed_add_embed_dim != UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM:
raise ValueError(
f"Model expects an added time embedding vector of length {UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def concat_embeddings(
unconditional: torch.FloatTensor,
conditional: torch.FloatTensor,
n_imgs: int,
):
return torch.cat([unconditional, conditional]).repeat_interleave(n_imgs, dim=0)
def add_all_snr_to_noise_scheduler(noise_scheduler, device):
try:
if hasattr(noise_scheduler, "all_snr"):
return
# compute it
with torch.no_grad():
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
alpha = sqrt_alphas_cumprod
sigma = sqrt_one_minus_alphas_cumprod
all_snr = (alpha / sigma) ** 2
all_snr.requires_grad = False
noise_scheduler.all_snr = all_snr.to(device)
except Exception as e:
# just move on
pass
def get_all_snr(noise_scheduler, device):
if hasattr(noise_scheduler, "all_snr"):
return noise_scheduler.all_snr.to(device)
# compute it
with torch.no_grad():
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
alpha = sqrt_alphas_cumprod
sigma = sqrt_one_minus_alphas_cumprod
all_snr = (alpha / sigma) ** 2
all_snr.requires_grad = False
return all_snr.to(device)
class LearnableSNRGamma:
"""
This is a trainer for learnable snr gamma
It will adapt to the dataset and attempt to adjust the snr multiplier to balance the loss over the timesteps
"""
def __init__(self, noise_scheduler: Union['DDPMScheduler'], device='cuda'):
self.device = device
self.noise_scheduler: Union['DDPMScheduler'] = noise_scheduler
self.offset_1 = torch.nn.Parameter(torch.tensor(0.0, dtype=torch.float32, device=device))
self.offset_2 = torch.nn.Parameter(torch.tensor(0.777, dtype=torch.float32, device=device))
self.scale = torch.nn.Parameter(torch.tensor(4.14, dtype=torch.float32, device=device))
self.gamma = torch.nn.Parameter(torch.tensor(2.03, dtype=torch.float32, device=device))
self.optimizer = torch.optim.AdamW([self.offset_1, self.offset_2, self.gamma, self.scale], lr=0.01)
self.buffer = []
self.max_buffer_size = 20
def forward(self, loss, timesteps):
# do a our train loop for lsnr here and return our values detached
loss = loss.detach()
with torch.no_grad():
loss_chunks = torch.chunk(loss, loss.shape[0], dim=0)
for loss_chunk in loss_chunks:
self.buffer.append(loss_chunk.mean().detach())
if len(self.buffer) > self.max_buffer_size:
self.buffer.pop(0)
all_snr = get_all_snr(self.noise_scheduler, loss.device)
snr: torch.Tensor = torch.stack([all_snr[t] for t in timesteps]).detach().float().to(loss.device)
base_snrs = snr.clone().detach()
snr.requires_grad = True
snr = (snr + self.offset_1) * self.scale + self.offset_2
gamma_over_snr = torch.div(torch.ones_like(snr) * self.gamma, snr)
snr_weight = torch.abs(gamma_over_snr).float().to(loss.device) # directly using gamma over snr
snr_adjusted_loss = loss * snr_weight
with torch.no_grad():
target = torch.mean(torch.stack(self.buffer)).detach()
# local_loss = torch.mean(torch.abs(snr_adjusted_loss - target))
squared_differences = (snr_adjusted_loss - target) ** 2
local_loss = torch.mean(squared_differences)
local_loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
return base_snrs, self.gamma.detach(), self.offset_1.detach(), self.offset_2.detach(), self.scale.detach()
def apply_learnable_snr_gos(
loss,
timesteps,
learnable_snr_trainer: LearnableSNRGamma
):
snr, gamma, offset_1, offset_2, scale = learnable_snr_trainer.forward(loss, timesteps)
snr = (snr + offset_1) * scale + offset_2
gamma_over_snr = torch.div(torch.ones_like(snr) * gamma, snr)
snr_weight = torch.abs(gamma_over_snr).float().to(loss.device) # directly using gamma over snr
snr_adjusted_loss = loss * snr_weight
return snr_adjusted_loss
def apply_snr_weight(
loss,
timesteps,
noise_scheduler: Union['DDPMScheduler'],
gamma,
fixed=False,
):
# will get it from noise scheduler if exist or will calculate it if not
all_snr = get_all_snr(noise_scheduler, loss.device)
# step_indices = []
# for t in timesteps:
# for i, st in enumerate(noise_scheduler.timesteps):
# if st == t:
# step_indices.append(i)
# break
# this breaks on some schedulers
# step_indices = [(noise_scheduler.timesteps == t).nonzero().item() for t in timesteps]
offset = 0
if noise_scheduler.timesteps[0] == 1000:
offset = 1
snr = torch.stack([all_snr[(t - offset).int()] for t in timesteps])
gamma_over_snr = torch.div(torch.ones_like(snr) * gamma, snr)
if fixed:
snr_weight = gamma_over_snr.float().to(loss.device) # directly using gamma over snr
else:
snr_weight = torch.minimum(gamma_over_snr, torch.ones_like(gamma_over_snr)).float().to(loss.device)
snr_adjusted_loss = loss * snr_weight
return snr_adjusted_loss
def precondition_model_outputs_flow_match(model_output, model_input, timestep_tensor, noise_scheduler):
mo_chunks = torch.chunk(model_output, model_output.shape[0], dim=0)
mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0)
timestep_chunks = torch.chunk(timestep_tensor, timestep_tensor.shape[0], dim=0)
out_chunks = []
# unsqueeze if timestep is zero dim
for idx in range(model_output.shape[0]):
sigmas = noise_scheduler.get_sigmas(timestep_chunks[idx], n_dim=model_output.ndim,
dtype=model_output.dtype, device=model_output.device)
# Follow: Section 5 of https://arxiv.org/abs/2206.00364.
# Preconditioning of the model outputs.
out = mo_chunks[idx] * (-sigmas) + mi_chunks[idx]
out_chunks.append(out)
return torch.cat(out_chunks, dim=0)