rahul7star's picture
boilerplate
fcc02a2 verified
import os
from typing import TYPE_CHECKING
import torch
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from toolkit.basic import flush
from diffusers import AutoencoderKL
# from toolkit.pixel_shuffle_encoder import AutoencoderPixelMixer
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.dequantize import patch_dequantization_on_save
from toolkit.accelerator import unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.quantize import quantize, get_qtype
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer
from .pipeline import ChromaPipeline
from einops import rearrange, repeat
import random
import torch.nn.functional as F
from .src.model import Chroma, chroma_params
from safetensors.torch import load_file, save_file
from toolkit.metadata import get_meta_for_safetensors
import huggingface_hub
if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": 0.5,
"max_image_seq_len": 4096,
"max_shift": 1.15,
"num_train_timesteps": 1000,
"shift": 3.0,
"use_dynamic_shifting": True
}
class FakeConfig:
# for diffusers compatability
def __init__(self):
self.attention_head_dim = 128
self.guidance_embeds = True
self.in_channels = 64
self.joint_attention_dim = 4096
self.num_attention_heads = 24
self.num_layers = 19
self.num_single_layers = 38
self.patch_size = 1
class FakeCLIP(torch.nn.Module):
def __init__(self):
super().__init__()
self.dtype = torch.bfloat16
self.device = 'cuda'
self.text_model = None
self.tokenizer = None
self.model_max_length = 77
def forward(self, *args, **kwargs):
return torch.zeros(1, 1, 1).to(self.device)
class ChromaModel(BaseModel):
arch = "chroma"
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(
device,
model_config,
dtype,
custom_pipeline,
noise_scheduler,
**kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['Chroma']
# static method to get the noise scheduler
@staticmethod
def get_train_scheduler():
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
def get_bucket_divisibility(self):
# return the bucket divisibility for the model
return 32
def load_model(self):
dtype = self.torch_dtype
# will be updated if we detect a existing checkpoint in training folder
model_path = self.model_config.name_or_path
if model_path == "lodestones/Chroma":
print("Looking for latest Chroma checkpoint")
# get the latest checkpoint
files_list = huggingface_hub.list_repo_files(model_path)
print(files_list)
latest_version = 28 # current latest version at time of writing
while True:
if f"chroma-unlocked-v{latest_version}.safetensors" not in files_list:
latest_version -= 1
break
else:
latest_version += 1
print(f"Using latest Chroma version: v{latest_version}")
# make sure we have it
model_path = huggingface_hub.hf_hub_download(
repo_id=model_path,
filename=f"chroma-unlocked-v{latest_version}.safetensors",
)
elif model_path.startswith("lodestones/Chroma/v"):
# get the version number
version = model_path.split("/")[-1].split("v")[-1]
print(f"Using Chroma version: v{version}")
# make sure we have it
model_path = huggingface_hub.hf_hub_download(
repo_id='lodestones/Chroma',
filename=f"chroma-unlocked-v{version}.safetensors",
)
else:
# check if the model path is a local file
if os.path.exists(model_path):
print(f"Using local model: {model_path}")
else:
raise ValueError(f"Model path {model_path} does not exist")
# extras_path = 'black-forest-labs/FLUX.1-schnell'
# schnell model is gated now, use flex instead
extras_path = 'ostris/Flex.1-alpha'
self.print_and_status_update("Loading transformer")
transformer = Chroma(chroma_params)
# add dtype, not sure why it doesnt have it
transformer.dtype = dtype
chroma_state_dict = load_file(model_path, 'cpu')
# load the state dict into the model
transformer.load_state_dict(chroma_state_dict)
transformer.to(self.quantize_device, dtype=dtype)
transformer.config = FakeConfig()
if self.model_config.quantize:
# patch the state dict method
patch_dequantization_on_save(transformer)
quantization_type = get_qtype(self.model_config.qtype)
self.print_and_status_update("Quantizing transformer")
quantize(transformer, weights=quantization_type,
**self.model_config.quantize_kwargs)
freeze(transformer)
transformer.to(self.device_torch)
else:
transformer.to(self.device_torch, dtype=dtype)
flush()
self.print_and_status_update("Loading T5")
tokenizer_2 = T5TokenizerFast.from_pretrained(
extras_path, subfolder="tokenizer_2", torch_dtype=dtype
)
text_encoder_2 = T5EncoderModel.from_pretrained(
extras_path, subfolder="text_encoder_2", torch_dtype=dtype
)
text_encoder_2.to(self.device_torch, dtype=dtype)
flush()
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing T5")
quantize(text_encoder_2, weights=get_qtype(
self.model_config.qtype))
freeze(text_encoder_2)
flush()
# self.print_and_status_update("Loading CLIP")
text_encoder = FakeCLIP()
tokenizer = FakeCLIP()
text_encoder.to(self.device_torch, dtype=dtype)
self.noise_scheduler = ChromaModel.get_train_scheduler()
self.print_and_status_update("Loading VAE")
vae = AutoencoderKL.from_pretrained(
extras_path,
subfolder="vae",
torch_dtype=dtype
)
vae = vae.to(self.device_torch, dtype=dtype)
self.print_and_status_update("Making pipe")
pipe: ChromaPipeline = ChromaPipeline(
scheduler=self.noise_scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=None,
tokenizer_2=tokenizer_2,
vae=vae,
transformer=None,
)
# for quantization, it works best to do these after making the pipe
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
self.print_and_status_update("Preparing Model")
text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
# just to make sure everything is on the right device and dtype
text_encoder[0].to(self.device_torch)
text_encoder[0].requires_grad_(False)
text_encoder[0].eval()
text_encoder[1].to(self.device_torch)
text_encoder[1].requires_grad_(False)
text_encoder[1].eval()
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
# save it to the model class
self.vae = vae
self.text_encoder = text_encoder # list of text encoders
self.tokenizer = tokenizer # list of tokenizers
self.model = pipe.transformer
self.pipeline = pipe
self.print_and_status_update("Model Loaded")
def get_generation_pipeline(self):
scheduler = ChromaModel.get_train_scheduler()
pipeline = ChromaPipeline(
scheduler=scheduler,
text_encoder=unwrap_model(self.text_encoder[0]),
tokenizer=self.tokenizer[0],
text_encoder_2=unwrap_model(self.text_encoder[1]),
tokenizer_2=self.tokenizer[1],
vae=unwrap_model(self.vae),
transformer=unwrap_model(self.transformer)
)
# pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: ChromaPipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
extra['negative_prompt_embeds'] = unconditional_embeds.text_embeds
extra['negative_prompt_attn_mask'] = unconditional_embeds.attention_mask
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
prompt_attn_mask=conditional_embeds.attention_mask,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
**extra
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs
):
with torch.no_grad():
bs, c, h, w = latent_model_input.shape
latent_model_input_packed = rearrange(
latent_model_input,
"b c (h ph) (w pw) -> b (h w) (c ph pw)",
ph=2,
pw=2
)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c",
b=bs).to(self.device_torch)
txt_ids = torch.zeros(
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch)
guidance = torch.full([1], 0, device=self.device_torch, dtype=torch.float32)
guidance = guidance.expand(latent_model_input_packed.shape[0])
cast_dtype = self.unet.dtype
noise_pred = self.unet(
img=latent_model_input_packed.to(
self.device_torch, cast_dtype
),
img_ids=img_ids,
txt=text_embeddings.text_embeds.to(
self.device_torch, cast_dtype
),
txt_ids=txt_ids,
txt_mask=text_embeddings.attention_mask.to(
self.device_torch, cast_dtype
),
timesteps=timestep / 1000,
guidance=guidance
)
if isinstance(noise_pred, QTensor):
noise_pred = noise_pred.dequantize()
noise_pred = rearrange(
noise_pred,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=latent_model_input.shape[2] // 2,
w=latent_model_input.shape[3] // 2,
ph=2,
pw=2,
c=self.vae.config.latent_channels
)
return noise_pred
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
if isinstance(prompt, str):
prompts = [prompt]
else:
prompts = prompt
if self.pipeline.text_encoder.device != self.device_torch:
self.pipeline.text_encoder.to(self.device_torch)
max_length = 512
device = self.text_encoder[1].device
dtype = self.text_encoder[1].dtype
# T5
text_inputs = self.tokenizer[1](
prompts,
padding="max_length",
max_length=max_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = self.text_encoder[1](text_input_ids.to(device), output_hidden_states=False)[0]
dtype = self.text_encoder[1].dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
prompt_attention_mask = text_inputs["attention_mask"]
pe = PromptEmbeds(
prompt_embeds
)
pe.attention_mask = prompt_attention_mask
return pe
def get_model_has_grad(self):
# return from a weight if it has grad
return self.model.final_layer.linear.weight.requires_grad
def get_te_has_grad(self):
# return from a weight if it has grad
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
def save_model(self, output_path, meta, save_dtype):
# only save the unet
transformer: Chroma = unwrap_model(self.model)
state_dict = transformer.state_dict()
save_dict = {}
for k, v in state_dict.items():
if isinstance(v, QTensor):
v = v.dequantize()
save_dict[k] = v.clone().to('cpu', dtype=save_dtype)
meta = get_meta_for_safetensors(meta, name='chroma')
save_file(save_dict, output_path, metadata=meta)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get('noise')
batch = kwargs.get('batch')
return (noise - batch.latents).detach()
def convert_lora_weights_before_save(self, state_dict):
# currently starte with transformer. but needs to start with diffusion_model. for comfyui
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("transformer.", "diffusion_model.")
new_sd[new_key] = value
return new_sd
def convert_lora_weights_before_load(self, state_dict):
# saved as diffusion_model. but needs to be transformer. for ai-toolkit
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("diffusion_model.", "transformer.")
new_sd[new_key] = value
return new_sd
def get_base_model_version(self):
return "chroma"