Spaces:
Running
Running
import os | |
from typing import TYPE_CHECKING | |
import torch | |
from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
from PIL import Image | |
from toolkit.models.base_model import BaseModel | |
from toolkit.basic import flush | |
from diffusers import AutoencoderKL | |
# from toolkit.pixel_shuffle_encoder import AutoencoderPixelMixer | |
from toolkit.prompt_utils import PromptEmbeds | |
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
from toolkit.dequantize import patch_dequantization_on_save | |
from toolkit.accelerator import unwrap_model | |
from optimum.quanto import freeze, QTensor | |
from toolkit.util.quantize import quantize, get_qtype | |
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer | |
from .pipeline import ChromaPipeline | |
from einops import rearrange, repeat | |
import random | |
import torch.nn.functional as F | |
from .src.model import Chroma, chroma_params | |
from safetensors.torch import load_file, save_file | |
from toolkit.metadata import get_meta_for_safetensors | |
import huggingface_hub | |
if TYPE_CHECKING: | |
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
scheduler_config = { | |
"base_image_seq_len": 256, | |
"base_shift": 0.5, | |
"max_image_seq_len": 4096, | |
"max_shift": 1.15, | |
"num_train_timesteps": 1000, | |
"shift": 3.0, | |
"use_dynamic_shifting": True | |
} | |
class FakeConfig: | |
# for diffusers compatability | |
def __init__(self): | |
self.attention_head_dim = 128 | |
self.guidance_embeds = True | |
self.in_channels = 64 | |
self.joint_attention_dim = 4096 | |
self.num_attention_heads = 24 | |
self.num_layers = 19 | |
self.num_single_layers = 38 | |
self.patch_size = 1 | |
class FakeCLIP(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.dtype = torch.bfloat16 | |
self.device = 'cuda' | |
self.text_model = None | |
self.tokenizer = None | |
self.model_max_length = 77 | |
def forward(self, *args, **kwargs): | |
return torch.zeros(1, 1, 1).to(self.device) | |
class ChromaModel(BaseModel): | |
arch = "chroma" | |
def __init__( | |
self, | |
device, | |
model_config: ModelConfig, | |
dtype='bf16', | |
custom_pipeline=None, | |
noise_scheduler=None, | |
**kwargs | |
): | |
super().__init__( | |
device, | |
model_config, | |
dtype, | |
custom_pipeline, | |
noise_scheduler, | |
**kwargs | |
) | |
self.is_flow_matching = True | |
self.is_transformer = True | |
self.target_lora_modules = ['Chroma'] | |
# static method to get the noise scheduler | |
def get_train_scheduler(): | |
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
def get_bucket_divisibility(self): | |
# return the bucket divisibility for the model | |
return 32 | |
def load_model(self): | |
dtype = self.torch_dtype | |
# will be updated if we detect a existing checkpoint in training folder | |
model_path = self.model_config.name_or_path | |
if model_path == "lodestones/Chroma": | |
print("Looking for latest Chroma checkpoint") | |
# get the latest checkpoint | |
files_list = huggingface_hub.list_repo_files(model_path) | |
print(files_list) | |
latest_version = 28 # current latest version at time of writing | |
while True: | |
if f"chroma-unlocked-v{latest_version}.safetensors" not in files_list: | |
latest_version -= 1 | |
break | |
else: | |
latest_version += 1 | |
print(f"Using latest Chroma version: v{latest_version}") | |
# make sure we have it | |
model_path = huggingface_hub.hf_hub_download( | |
repo_id=model_path, | |
filename=f"chroma-unlocked-v{latest_version}.safetensors", | |
) | |
elif model_path.startswith("lodestones/Chroma/v"): | |
# get the version number | |
version = model_path.split("/")[-1].split("v")[-1] | |
print(f"Using Chroma version: v{version}") | |
# make sure we have it | |
model_path = huggingface_hub.hf_hub_download( | |
repo_id='lodestones/Chroma', | |
filename=f"chroma-unlocked-v{version}.safetensors", | |
) | |
else: | |
# check if the model path is a local file | |
if os.path.exists(model_path): | |
print(f"Using local model: {model_path}") | |
else: | |
raise ValueError(f"Model path {model_path} does not exist") | |
# extras_path = 'black-forest-labs/FLUX.1-schnell' | |
# schnell model is gated now, use flex instead | |
extras_path = 'ostris/Flex.1-alpha' | |
self.print_and_status_update("Loading transformer") | |
transformer = Chroma(chroma_params) | |
# add dtype, not sure why it doesnt have it | |
transformer.dtype = dtype | |
chroma_state_dict = load_file(model_path, 'cpu') | |
# load the state dict into the model | |
transformer.load_state_dict(chroma_state_dict) | |
transformer.to(self.quantize_device, dtype=dtype) | |
transformer.config = FakeConfig() | |
if self.model_config.quantize: | |
# patch the state dict method | |
patch_dequantization_on_save(transformer) | |
quantization_type = get_qtype(self.model_config.qtype) | |
self.print_and_status_update("Quantizing transformer") | |
quantize(transformer, weights=quantization_type, | |
**self.model_config.quantize_kwargs) | |
freeze(transformer) | |
transformer.to(self.device_torch) | |
else: | |
transformer.to(self.device_torch, dtype=dtype) | |
flush() | |
self.print_and_status_update("Loading T5") | |
tokenizer_2 = T5TokenizerFast.from_pretrained( | |
extras_path, subfolder="tokenizer_2", torch_dtype=dtype | |
) | |
text_encoder_2 = T5EncoderModel.from_pretrained( | |
extras_path, subfolder="text_encoder_2", torch_dtype=dtype | |
) | |
text_encoder_2.to(self.device_torch, dtype=dtype) | |
flush() | |
if self.model_config.quantize_te: | |
self.print_and_status_update("Quantizing T5") | |
quantize(text_encoder_2, weights=get_qtype( | |
self.model_config.qtype)) | |
freeze(text_encoder_2) | |
flush() | |
# self.print_and_status_update("Loading CLIP") | |
text_encoder = FakeCLIP() | |
tokenizer = FakeCLIP() | |
text_encoder.to(self.device_torch, dtype=dtype) | |
self.noise_scheduler = ChromaModel.get_train_scheduler() | |
self.print_and_status_update("Loading VAE") | |
vae = AutoencoderKL.from_pretrained( | |
extras_path, | |
subfolder="vae", | |
torch_dtype=dtype | |
) | |
vae = vae.to(self.device_torch, dtype=dtype) | |
self.print_and_status_update("Making pipe") | |
pipe: ChromaPipeline = ChromaPipeline( | |
scheduler=self.noise_scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=None, | |
tokenizer_2=tokenizer_2, | |
vae=vae, | |
transformer=None, | |
) | |
# for quantization, it works best to do these after making the pipe | |
pipe.text_encoder_2 = text_encoder_2 | |
pipe.transformer = transformer | |
self.print_and_status_update("Preparing Model") | |
text_encoder = [pipe.text_encoder, pipe.text_encoder_2] | |
tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# just to make sure everything is on the right device and dtype | |
text_encoder[0].to(self.device_torch) | |
text_encoder[0].requires_grad_(False) | |
text_encoder[0].eval() | |
text_encoder[1].to(self.device_torch) | |
text_encoder[1].requires_grad_(False) | |
text_encoder[1].eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# save it to the model class | |
self.vae = vae | |
self.text_encoder = text_encoder # list of text encoders | |
self.tokenizer = tokenizer # list of tokenizers | |
self.model = pipe.transformer | |
self.pipeline = pipe | |
self.print_and_status_update("Model Loaded") | |
def get_generation_pipeline(self): | |
scheduler = ChromaModel.get_train_scheduler() | |
pipeline = ChromaPipeline( | |
scheduler=scheduler, | |
text_encoder=unwrap_model(self.text_encoder[0]), | |
tokenizer=self.tokenizer[0], | |
text_encoder_2=unwrap_model(self.text_encoder[1]), | |
tokenizer_2=self.tokenizer[1], | |
vae=unwrap_model(self.vae), | |
transformer=unwrap_model(self.transformer) | |
) | |
# pipeline = pipeline.to(self.device_torch) | |
return pipeline | |
def generate_single_image( | |
self, | |
pipeline: ChromaPipeline, | |
gen_config: GenerateImageConfig, | |
conditional_embeds: PromptEmbeds, | |
unconditional_embeds: PromptEmbeds, | |
generator: torch.Generator, | |
extra: dict, | |
): | |
extra['negative_prompt_embeds'] = unconditional_embeds.text_embeds | |
extra['negative_prompt_attn_mask'] = unconditional_embeds.attention_mask | |
img = pipeline( | |
prompt_embeds=conditional_embeds.text_embeds, | |
prompt_attn_mask=conditional_embeds.attention_mask, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
generator=generator, | |
**extra | |
).images[0] | |
return img | |
def get_noise_prediction( | |
self, | |
latent_model_input: torch.Tensor, | |
timestep: torch.Tensor, # 0 to 1000 scale | |
text_embeddings: PromptEmbeds, | |
**kwargs | |
): | |
with torch.no_grad(): | |
bs, c, h, w = latent_model_input.shape | |
latent_model_input_packed = rearrange( | |
latent_model_input, | |
"b c (h ph) (w pw) -> b (h w) (c ph pw)", | |
ph=2, | |
pw=2 | |
) | |
img_ids = torch.zeros(h // 2, w // 2, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", | |
b=bs).to(self.device_torch) | |
txt_ids = torch.zeros( | |
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) | |
guidance = torch.full([1], 0, device=self.device_torch, dtype=torch.float32) | |
guidance = guidance.expand(latent_model_input_packed.shape[0]) | |
cast_dtype = self.unet.dtype | |
noise_pred = self.unet( | |
img=latent_model_input_packed.to( | |
self.device_torch, cast_dtype | |
), | |
img_ids=img_ids, | |
txt=text_embeddings.text_embeds.to( | |
self.device_torch, cast_dtype | |
), | |
txt_ids=txt_ids, | |
txt_mask=text_embeddings.attention_mask.to( | |
self.device_torch, cast_dtype | |
), | |
timesteps=timestep / 1000, | |
guidance=guidance | |
) | |
if isinstance(noise_pred, QTensor): | |
noise_pred = noise_pred.dequantize() | |
noise_pred = rearrange( | |
noise_pred, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=latent_model_input.shape[2] // 2, | |
w=latent_model_input.shape[3] // 2, | |
ph=2, | |
pw=2, | |
c=self.vae.config.latent_channels | |
) | |
return noise_pred | |
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
if isinstance(prompt, str): | |
prompts = [prompt] | |
else: | |
prompts = prompt | |
if self.pipeline.text_encoder.device != self.device_torch: | |
self.pipeline.text_encoder.to(self.device_torch) | |
max_length = 512 | |
device = self.text_encoder[1].device | |
dtype = self.text_encoder[1].dtype | |
# T5 | |
text_inputs = self.tokenizer[1]( | |
prompts, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_embeds = self.text_encoder[1](text_input_ids.to(device), output_hidden_states=False)[0] | |
dtype = self.text_encoder[1].dtype | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
prompt_attention_mask = text_inputs["attention_mask"] | |
pe = PromptEmbeds( | |
prompt_embeds | |
) | |
pe.attention_mask = prompt_attention_mask | |
return pe | |
def get_model_has_grad(self): | |
# return from a weight if it has grad | |
return self.model.final_layer.linear.weight.requires_grad | |
def get_te_has_grad(self): | |
# return from a weight if it has grad | |
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
def save_model(self, output_path, meta, save_dtype): | |
# only save the unet | |
transformer: Chroma = unwrap_model(self.model) | |
state_dict = transformer.state_dict() | |
save_dict = {} | |
for k, v in state_dict.items(): | |
if isinstance(v, QTensor): | |
v = v.dequantize() | |
save_dict[k] = v.clone().to('cpu', dtype=save_dtype) | |
meta = get_meta_for_safetensors(meta, name='chroma') | |
save_file(save_dict, output_path, metadata=meta) | |
def get_loss_target(self, *args, **kwargs): | |
noise = kwargs.get('noise') | |
batch = kwargs.get('batch') | |
return (noise - batch.latents).detach() | |
def convert_lora_weights_before_save(self, state_dict): | |
# currently starte with transformer. but needs to start with diffusion_model. for comfyui | |
new_sd = {} | |
for key, value in state_dict.items(): | |
new_key = key.replace("transformer.", "diffusion_model.") | |
new_sd[new_key] = value | |
return new_sd | |
def convert_lora_weights_before_load(self, state_dict): | |
# saved as diffusion_model. but needs to be transformer. for ai-toolkit | |
new_sd = {} | |
for key, value in state_dict.items(): | |
new_key = key.replace("diffusion_model.", "transformer.") | |
new_sd[new_key] = value | |
return new_sd | |
def get_base_model_version(self): | |
return "chroma" | |