Spaces:
Running
Running
import os | |
from typing import TYPE_CHECKING | |
import torch | |
import yaml | |
from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
from PIL import Image | |
from toolkit.models.base_model import BaseModel | |
from toolkit.basic import flush | |
from diffusers import AutoencoderKL | |
from toolkit.prompt_utils import PromptEmbeds | |
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
from toolkit.dequantize import patch_dequantization_on_save | |
from toolkit.accelerator import unwrap_model | |
from optimum.quanto import freeze, QTensor | |
from toolkit.util.quantize import quantize, get_qtype | |
from transformers import T5TokenizerFast, T5EncoderModel | |
from .src import FLitePipeline, DiT | |
if TYPE_CHECKING: | |
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
scheduler_config = { | |
"base_image_seq_len": 256, | |
"base_shift": 0.5, | |
"max_image_seq_len": 4096, | |
"max_shift": 1.15, | |
"num_train_timesteps": 1000, | |
"shift": 3.0, | |
"use_dynamic_shifting": True | |
} | |
class FLiteModel(BaseModel): | |
arch = "f-lite" | |
def __init__( | |
self, | |
device, | |
model_config: ModelConfig, | |
dtype='bf16', | |
custom_pipeline=None, | |
noise_scheduler=None, | |
**kwargs | |
): | |
super().__init__( | |
device, | |
model_config, | |
dtype, | |
custom_pipeline, | |
noise_scheduler, | |
**kwargs | |
) | |
self.is_flow_matching = True | |
self.is_transformer = True | |
self.target_lora_modules = ['DiT'] | |
# static method to get the noise scheduler | |
def get_train_scheduler(): | |
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
def get_bucket_divisibility(self): | |
# return the bucket divisibility for the model | |
return 16 | |
def load_model(self): | |
dtype = self.torch_dtype | |
# will be updated if we detect a existing checkpoint in training folder | |
model_path = self.model_config.name_or_path | |
extras_path = self.model_config.extras_name_or_path | |
self.print_and_status_update("Loading transformer") | |
transformer = DiT.from_pretrained( | |
model_path, | |
subfolder="dit_model", | |
torch_dtype=dtype, | |
) | |
transformer.to(self.quantize_device, dtype=dtype) | |
if self.model_config.quantize: | |
# patch the state dict method | |
patch_dequantization_on_save(transformer) | |
quantization_type = get_qtype(self.model_config.qtype) | |
self.print_and_status_update("Quantizing transformer") | |
quantize(transformer, weights=quantization_type, | |
**self.model_config.quantize_kwargs) | |
freeze(transformer) | |
transformer.to(self.device_torch) | |
else: | |
transformer.to(self.device_torch, dtype=dtype) | |
flush() | |
self.print_and_status_update("Loading T5") | |
tokenizer = T5TokenizerFast.from_pretrained( | |
extras_path, subfolder="tokenizer", torch_dtype=dtype | |
) | |
text_encoder = T5EncoderModel.from_pretrained( | |
extras_path, subfolder="text_encoder", torch_dtype=dtype | |
) | |
text_encoder.to(self.device_torch, dtype=dtype) | |
flush() | |
if self.model_config.quantize_te: | |
self.print_and_status_update("Quantizing T5") | |
quantize(text_encoder, weights=get_qtype( | |
self.model_config.qtype)) | |
freeze(text_encoder) | |
flush() | |
self.noise_scheduler = FLiteModel.get_train_scheduler() | |
self.print_and_status_update("Loading VAE") | |
vae = AutoencoderKL.from_pretrained( | |
extras_path, | |
subfolder="vae", | |
torch_dtype=dtype | |
) | |
vae = vae.to(self.device_torch, dtype=dtype) | |
self.print_and_status_update("Making pipe") | |
pipe: FLitePipeline = FLitePipeline( | |
text_encoder=None, | |
tokenizer=tokenizer, | |
vae=vae, | |
dit_model=None, | |
) | |
# for quantization, it works best to do these after making the pipe | |
pipe.text_encoder = text_encoder | |
pipe.dit_model = transformer | |
pipe.transformer = transformer | |
pipe.scheduler = self.noise_scheduler, | |
self.print_and_status_update("Preparing Model") | |
text_encoder = [pipe.text_encoder] | |
tokenizer = [pipe.tokenizer] | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# just to make sure everything is on the right device and dtype | |
text_encoder[0].to(self.device_torch) | |
text_encoder[0].requires_grad_(False) | |
text_encoder[0].eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# save it to the model class | |
self.vae = vae | |
self.text_encoder = text_encoder # list of text encoders | |
self.tokenizer = tokenizer # list of tokenizers | |
self.model = pipe.transformer | |
self.pipeline = pipe | |
self.print_and_status_update("Model Loaded") | |
def get_generation_pipeline(self): | |
scheduler = FLiteModel.get_train_scheduler() | |
# it has built in scheduler. Basically euler flowmatching | |
pipeline = FLitePipeline( | |
text_encoder=unwrap_model(self.text_encoder[0]), | |
tokenizer=self.tokenizer[0], | |
vae=unwrap_model(self.vae), | |
dit_model=unwrap_model(self.transformer) | |
) | |
pipeline.transformer = pipeline.dit_model | |
pipeline.scheduler = scheduler | |
return pipeline | |
def generate_single_image( | |
self, | |
pipeline: FLitePipeline, | |
gen_config: GenerateImageConfig, | |
conditional_embeds: PromptEmbeds, | |
unconditional_embeds: PromptEmbeds, | |
generator: torch.Generator, | |
extra: dict, | |
): | |
extra['negative_prompt_embeds'] = unconditional_embeds.text_embeds | |
img = pipeline( | |
prompt_embeds=conditional_embeds.text_embeds, | |
negative_prompt_embeds=unconditional_embeds.text_embeds, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
generator=generator, | |
).images[0] | |
return img | |
def get_noise_prediction( | |
self, | |
latent_model_input: torch.Tensor, | |
timestep: torch.Tensor, # 0 to 1000 scale | |
text_embeddings: PromptEmbeds, | |
**kwargs | |
): | |
cast_dtype = self.unet.dtype | |
noise_pred = self.unet( | |
latent_model_input.to( | |
self.device_torch, cast_dtype | |
), | |
text_embeddings.text_embeds.to( | |
self.device_torch, cast_dtype | |
), | |
timestep / 1000, | |
) | |
if isinstance(noise_pred, QTensor): | |
noise_pred = noise_pred.dequantize() | |
return noise_pred | |
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
if isinstance(prompt, str): | |
prompts = [prompt] | |
else: | |
prompts = prompt | |
if self.pipeline.text_encoder.device != self.device_torch: | |
self.pipeline.text_encoder.to(self.device_torch) | |
prompt_embeds, negative_embeds = self.pipeline.encode_prompt( | |
prompt=prompts, | |
negative_prompt=None, | |
device=self.text_encoder[0].device, | |
dtype=self.torch_dtype, | |
) | |
pe = PromptEmbeds(prompt_embeds) | |
return pe | |
def get_model_has_grad(self): | |
# return from a weight if it has grad | |
return False | |
def get_te_has_grad(self): | |
# return from a weight if it has grad | |
return False | |
def save_model(self, output_path, meta, save_dtype): | |
# only save the unet | |
transformer: DiT = unwrap_model(self.model) | |
# diffusers | |
# only save the unet | |
transformer: DiT = unwrap_model(self.transformer) | |
transformer.save_pretrained( | |
save_directory=os.path.join(output_path, 'dit_model'), | |
safe_serialization=True, | |
) | |
# save out meta config | |
meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
with open(meta_path, 'w') as f: | |
yaml.dump(meta, f) | |
def get_loss_target(self, *args, **kwargs): | |
noise = kwargs.get('noise') | |
batch = kwargs.get('batch') | |
# return (noise - batch.latents).detach() | |
return (batch.latents - noise).detach() | |
def convert_lora_weights_before_save(self, state_dict): | |
# currently starte with transformer. but needs to start with diffusion_model. for comfyui | |
new_sd = {} | |
for key, value in state_dict.items(): | |
new_key = key.replace("transformer.", "diffusion_model.") | |
new_sd[new_key] = value | |
return new_sd | |
def convert_lora_weights_before_load(self, state_dict): | |
# saved as diffusion_model. but needs to be transformer. for ai-toolkit | |
new_sd = {} | |
for key, value in state_dict.items(): | |
new_key = key.replace("diffusion_model.", "transformer.") | |
new_sd[new_key] = value | |
return new_sd | |
def get_base_model_version(self): | |
return "f-lite" | |
def get_stepped_pred(self, pred, noise): | |
# just used for DFE support | |
latents = pred + noise | |
return latents | |