rahul7star's picture
boilerplate
fcc02a2 verified
import os
from typing import TYPE_CHECKING, List, Optional
import einops
import torch
import torchvision
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from diffusers import AutoencoderKL, TorchAoConfig
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
from toolkit.dequantize import patch_dequantization_on_save
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.mask import generate_random_mask, random_dialate_mask
from toolkit.util.quantize import quantize, get_qtype
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer, TorchAoConfig as TorchAoConfigTransformers
from .src.pipelines.hidream_image.pipeline_hidream_image import HiDreamImagePipeline
from .src.models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel
from .src.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
from einops import rearrange, repeat
import random
import torch.nn.functional as F
from tqdm import tqdm
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer,
LlamaForCausalLM,
PreTrainedTokenizerFast
)
if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
scheduler_config = {
"num_train_timesteps": 1000,
"shift": 3.0
}
# LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
LLAMA_MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-Instruct"
BASE_MODEL_PATH = "HiDream-ai/HiDream-I1-Full"
class HidreamModel(BaseModel):
arch = "hidream"
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(
device,
model_config,
dtype,
custom_pipeline,
noise_scheduler,
**kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['HiDreamImageTransformer2DModel']
# static method to get the noise scheduler
@staticmethod
def get_train_scheduler():
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
def get_bucket_divisibility(self):
return 16
def load_model(self):
dtype = self.torch_dtype
# HiDream-ai/HiDream-I1-Full
self.print_and_status_update("Loading HiDream model")
# will be updated if we detect a existing checkpoint in training folder
model_path = self.model_config.name_or_path
extras_path = self.model_config.extras_name_or_path
llama_model_path = self.model_config.model_kwargs.get('llama_model_path', LLAMA_MODEL_PATH)
scheduler = HidreamModel.get_train_scheduler()
self.print_and_status_update("Loading llama 8b model")
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
llama_model_path,
use_fast=False
)
text_encoder_4 = LlamaForCausalLM.from_pretrained(
llama_model_path,
output_hidden_states=True,
output_attentions=True,
torch_dtype=torch.bfloat16,
)
text_encoder_4.to(self.device_torch, dtype=dtype)
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing llama 8b model")
quantization_type = get_qtype(self.model_config.qtype_te)
quantize(text_encoder_4, weights=quantization_type)
freeze(text_encoder_4)
if self.low_vram:
# unload it for now
text_encoder_4.to('cpu')
flush()
self.print_and_status_update("Loading transformer")
transformer = HiDreamImageTransformer2DModel.from_pretrained(
model_path,
subfolder="transformer",
torch_dtype=torch.bfloat16
)
if not self.low_vram:
transformer.to(self.device_torch, dtype=dtype)
if self.model_config.quantize:
self.print_and_status_update("Quantizing transformer")
quantization_type = get_qtype(self.model_config.qtype)
if self.low_vram:
# move and quantize only certain pieces at a time.
all_blocks = list(transformer.double_stream_blocks) + list(transformer.single_stream_blocks)
self.print_and_status_update(" - quantizing transformer blocks")
for block in tqdm(all_blocks):
block.to(self.device_torch, dtype=dtype)
quantize(block, weights=quantization_type)
freeze(block)
block.to('cpu')
# flush()
self.print_and_status_update(" - quantizing extras")
transformer.to(self.device_torch, dtype=dtype)
quantize(transformer, weights=quantization_type)
freeze(transformer)
else:
quantize(transformer, weights=quantization_type)
freeze(transformer)
if self.low_vram:
# unload it for now
transformer.to('cpu')
flush()
self.print_and_status_update("Loading vae")
vae = AutoencoderKL.from_pretrained(
extras_path,
subfolder="vae",
torch_dtype=torch.bfloat16
).to(self.device_torch, dtype=dtype)
self.print_and_status_update("Loading clip encoders")
text_encoder = CLIPTextModelWithProjection.from_pretrained(
extras_path,
subfolder="text_encoder",
torch_dtype=torch.bfloat16
).to(self.device_torch, dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(
extras_path,
subfolder="tokenizer"
)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
extras_path,
subfolder="text_encoder_2",
torch_dtype=torch.bfloat16
).to(self.device_torch, dtype=dtype)
tokenizer_2 = CLIPTokenizer.from_pretrained(
extras_path,
subfolder="tokenizer_2"
)
flush()
self.print_and_status_update("Loading T5 encoders")
text_encoder_3 = T5EncoderModel.from_pretrained(
extras_path,
subfolder="text_encoder_3",
torch_dtype=torch.bfloat16
).to(self.device_torch, dtype=dtype)
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing T5")
quantization_type = get_qtype(self.model_config.qtype_te)
quantize(text_encoder_3, weights=quantization_type)
freeze(text_encoder_3)
flush()
tokenizer_3 = T5Tokenizer.from_pretrained(
extras_path,
subfolder="tokenizer_3"
)
flush()
if self.low_vram:
self.print_and_status_update("Moving ecerything to device")
# move it all back
transformer.to(self.device_torch, dtype=dtype)
vae.to(self.device_torch, dtype=dtype)
text_encoder.to(self.device_torch, dtype=dtype)
text_encoder_2.to(self.device_torch, dtype=dtype)
text_encoder_4.to(self.device_torch, dtype=dtype)
text_encoder_3.to(self.device_torch, dtype=dtype)
# set to eval mode
# transformer.eval()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
text_encoder_4.eval()
text_encoder_3.eval()
pipe = HiDreamImagePipeline(
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
text_encoder_3=text_encoder_3,
tokenizer_3=tokenizer_3,
text_encoder_4=text_encoder_4,
tokenizer_4=tokenizer_4,
transformer=transformer,
)
flush()
text_encoder_list = [text_encoder, text_encoder_2, text_encoder_3, text_encoder_4]
tokenizer_list = [tokenizer, tokenizer_2, tokenizer_3, tokenizer_4]
for te in text_encoder_list:
# set the dtype
te.to(self.device_torch, dtype=dtype)
# freeze the model
freeze(te)
# set to eval mode
te.eval()
# set the requires grad to false
te.requires_grad_(False)
flush()
# save it to the model class
self.vae = vae
self.text_encoder = text_encoder_list # list of text encoders
self.tokenizer = tokenizer_list # list of tokenizers
self.model = pipe.transformer
self.pipeline = pipe
self.print_and_status_update("Model Loaded")
def get_generation_pipeline(self):
scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000,
shift=3.0,
use_dynamic_shifting=False
)
pipeline: HiDreamImagePipeline = HiDreamImagePipeline(
scheduler=scheduler,
vae=self.vae,
text_encoder=self.text_encoder[0],
tokenizer=self.tokenizer[0],
text_encoder_2=self.text_encoder[1],
tokenizer_2=self.tokenizer[1],
text_encoder_3=self.text_encoder[2],
tokenizer_3=self.tokenizer[2],
text_encoder_4=self.text_encoder[3],
tokenizer_4=self.tokenizer[3],
transformer=unwrap_model(self.model),
aggressive_unloading=self.low_vram
)
pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: HiDreamImagePipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
negative_prompt_embeds=unconditional_embeds.text_embeds,
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
**extra
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs
):
batch_size = latent_model_input.shape[0]
with torch.no_grad():
if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
B, C, H, W = latent_model_input.shape
pH, pW = H // self.model.config.patch_size, W // self.model.config.patch_size
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
img_ids = torch.zeros(pH, pW, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :]
img_ids = img_ids.reshape(pH * pW, -1)
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
img_ids_pad[:pH*pW, :] = img_ids
img_sizes = img_sizes.unsqueeze(0).to(latent_model_input.device)
img_sizes = torch.cat([img_sizes] * batch_size, dim=0)
img_ids = img_ids_pad.unsqueeze(0).to(latent_model_input.device)
img_ids = torch.cat([img_ids] * batch_size, dim=0)
else:
img_sizes = img_ids = None
dtype = self.model.dtype
device = self.device_torch
# Pack the latent
if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
B, C, H, W = latent_model_input.shape
patch_size = self.transformer.config.patch_size
pH, pW = H // patch_size, W // patch_size
out = torch.zeros(
(B, C, self.transformer.max_seq, patch_size * patch_size),
dtype=latent_model_input.dtype,
device=latent_model_input.device
)
latent_model_input = einops.rearrange(latent_model_input, 'B C (H p1) (W p2) -> B C (H W) (p1 p2)', p1=patch_size, p2=patch_size)
out[:, :, 0:pH*pW] = latent_model_input
latent_model_input = out
text_embeds = text_embeddings.text_embeds
# run the to for the list
text_embeds = [te.to(device, dtype=dtype) for te in text_embeds]
noise_pred = self.transformer(
hidden_states = latent_model_input,
timesteps = timestep,
encoder_hidden_states = text_embeds,
pooled_embeds = text_embeddings.pooled_embeds.to(device, dtype=dtype),
img_sizes = img_sizes,
img_ids = img_ids,
return_dict = False,
)[0]
noise_pred = -noise_pred
return noise_pred
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
self.text_encoder_to(self.device_torch, dtype=self.torch_dtype)
max_sequence_length = 128
prompt_embeds, pooled_prompt_embeds = self.pipeline._encode_prompt(
prompt = prompt,
prompt_2 = prompt,
prompt_3 = prompt,
prompt_4 = prompt,
device = self.device_torch,
dtype = self.torch_dtype,
num_images_per_prompt = 1,
max_sequence_length = max_sequence_length,
)
pe = PromptEmbeds(
[prompt_embeds, pooled_prompt_embeds]
)
return pe
def get_model_has_grad(self):
# return from a weight if it has grad
return self.model.double_stream_blocks[0].block.attn1.to_q.weight.requires_grad
def get_te_has_grad(self):
# assume no one wants to finetune 4 text encoders.
return False
def save_model(self, output_path, meta, save_dtype):
# only save the unet
transformer: HiDreamImageTransformer2DModel = unwrap_model(self.model)
transformer.save_pretrained(
save_directory=os.path.join(output_path, 'transformer'),
safe_serialization=True,
)
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
with open(meta_path, 'w') as f:
yaml.dump(meta, f)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get('noise')
batch = kwargs.get('batch')
return (noise - batch.latents).detach()
def get_transformer_block_names(self) -> Optional[List[str]]:
return ['double_stream_blocks', 'single_stream_blocks']
def convert_lora_weights_before_save(self, state_dict):
# currently starte with transformer. but needs to start with diffusion_model. for comfyui
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("transformer.", "diffusion_model.")
new_sd[new_key] = value
return new_sd
def convert_lora_weights_before_load(self, state_dict):
# saved as diffusion_model. but needs to be transformer. for ai-toolkit
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("diffusion_model.", "transformer.")
new_sd[new_key] = value
return new_sd
def get_base_model_version(self):
return "hidream_i1"