Spaces:
Running
Running
import copy | |
import random | |
from collections import OrderedDict | |
import os | |
from contextlib import nullcontext | |
from typing import Optional, Union, List | |
from torch.utils.data import ConcatDataset, DataLoader | |
from toolkit.config_modules import ReferenceDatasetConfig | |
from toolkit.data_loader import PairedImageDataset | |
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds, build_latent_image_batch_for_prompt_pair | |
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds | |
from toolkit.train_tools import get_torch_dtype, apply_snr_weight | |
import gc | |
from toolkit import train_tools | |
import torch | |
from jobs.process import BaseSDTrainProcess | |
import random | |
import random | |
from collections import OrderedDict | |
from tqdm import tqdm | |
from toolkit.config_modules import SliderConfig | |
from toolkit.train_tools import get_torch_dtype, apply_snr_weight | |
import gc | |
from toolkit import train_tools | |
from toolkit.prompt_utils import \ | |
EncodedPromptPair, ACTION_TYPES_SLIDER, \ | |
EncodedAnchor, concat_prompt_pairs, \ | |
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \ | |
split_prompt_pairs | |
import torch | |
def flush(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
class UltimateSliderConfig(SliderConfig): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.additional_losses: List[str] = kwargs.get('additional_losses', []) | |
self.weight_jitter: float = kwargs.get('weight_jitter', 0.0) | |
self.img_loss_weight: float = kwargs.get('img_loss_weight', 1.0) | |
self.cfg_loss_weight: float = kwargs.get('cfg_loss_weight', 1.0) | |
self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])] | |
class UltimateSliderTrainerProcess(BaseSDTrainProcess): | |
sd: StableDiffusion | |
data_loader: DataLoader = None | |
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs): | |
super().__init__(process_id, job, config, **kwargs) | |
self.prompt_txt_list = None | |
self.step_num = 0 | |
self.start_step = 0 | |
self.device = self.get_conf('device', self.job.device) | |
self.device_torch = torch.device(self.device) | |
self.slider_config = UltimateSliderConfig(**self.get_conf('slider', {})) | |
self.prompt_cache = PromptEmbedsCache() | |
self.prompt_pairs: list[EncodedPromptPair] = [] | |
self.anchor_pairs: list[EncodedAnchor] = [] | |
# keep track of prompt chunk size | |
self.prompt_chunk_size = 1 | |
# store a list of all the prompts from the dataset so we can cache it | |
self.dataset_prompts = [] | |
self.train_with_dataset = self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0 | |
def load_datasets(self): | |
if self.data_loader is None and \ | |
self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0: | |
print(f"Loading datasets") | |
datasets = [] | |
for dataset in self.slider_config.datasets: | |
print(f" - Dataset: {dataset.pair_folder}") | |
config = { | |
'path': dataset.pair_folder, | |
'size': dataset.size, | |
'default_prompt': dataset.target_class, | |
'network_weight': dataset.network_weight, | |
'pos_weight': dataset.pos_weight, | |
'neg_weight': dataset.neg_weight, | |
'pos_folder': dataset.pos_folder, | |
'neg_folder': dataset.neg_folder, | |
} | |
image_dataset = PairedImageDataset(config) | |
datasets.append(image_dataset) | |
# capture all the prompts from it so we can cache the embeds | |
self.dataset_prompts += image_dataset.get_all_prompts() | |
concatenated_dataset = ConcatDataset(datasets) | |
self.data_loader = DataLoader( | |
concatenated_dataset, | |
batch_size=self.train_config.batch_size, | |
shuffle=True, | |
num_workers=2 | |
) | |
def before_model_load(self): | |
pass | |
def hook_before_train_loop(self): | |
# load any datasets if they were passed | |
self.load_datasets() | |
# read line by line from file | |
if self.slider_config.prompt_file: | |
self.print(f"Loading prompt file from {self.slider_config.prompt_file}") | |
with open(self.slider_config.prompt_file, 'r', encoding='utf-8') as f: | |
self.prompt_txt_list = f.readlines() | |
# clean empty lines | |
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0] | |
self.print(f"Found {len(self.prompt_txt_list)} prompts.") | |
if not self.slider_config.prompt_tensors: | |
print(f"Prompt tensors not found. Building prompt tensors for {self.train_config.steps} steps.") | |
# shuffle | |
random.shuffle(self.prompt_txt_list) | |
# trim to max steps | |
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps] | |
# trim list to our max steps | |
cache = PromptEmbedsCache() | |
# get encoded latents for our prompts | |
with torch.no_grad(): | |
# list of neutrals. Can come from file or be empty | |
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""] | |
# build the prompts to cache | |
prompts_to_cache = [] | |
for neutral in neutral_list: | |
for target in self.slider_config.targets: | |
prompt_list = [ | |
f"{target.target_class}", # target_class | |
f"{target.target_class} {neutral}", # target_class with neutral | |
f"{target.positive}", # positive_target | |
f"{target.positive} {neutral}", # positive_target with neutral | |
f"{target.negative}", # negative_target | |
f"{target.negative} {neutral}", # negative_target with neutral | |
f"{neutral}", # neutral | |
f"{target.positive} {target.negative}", # both targets | |
f"{target.negative} {target.positive}", # both targets reverse | |
] | |
prompts_to_cache += prompt_list | |
# remove duplicates | |
prompts_to_cache = list(dict.fromkeys(prompts_to_cache)) | |
# trim to max steps if max steps is lower than prompt count | |
prompts_to_cache = prompts_to_cache[:self.train_config.steps] | |
if len(self.dataset_prompts) > 0: | |
# add the prompts from the dataset | |
prompts_to_cache += self.dataset_prompts | |
# encode them | |
cache = encode_prompts_to_cache( | |
prompt_list=prompts_to_cache, | |
sd=self.sd, | |
cache=cache, | |
prompt_tensor_file=self.slider_config.prompt_tensors | |
) | |
prompt_pairs = [] | |
prompt_batches = [] | |
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False): | |
for target in self.slider_config.targets: | |
prompt_pair_batch = build_prompt_pair_batch_from_cache( | |
cache=cache, | |
target=target, | |
neutral=neutral, | |
) | |
if self.slider_config.batch_full_slide: | |
# concat the prompt pairs | |
# this allows us to run the entire 4 part process in one shot (for slider) | |
self.prompt_chunk_size = 4 | |
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu') | |
prompt_pairs += [concat_prompt_pair_batch] | |
else: | |
self.prompt_chunk_size = 1 | |
# do them one at a time (probably not necessary after new optimizations) | |
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch] | |
# move to cpu to save vram | |
# We don't need text encoder anymore, but keep it on cpu for sampling | |
# if text encoder is list | |
if isinstance(self.sd.text_encoder, list): | |
for encoder in self.sd.text_encoder: | |
encoder.to("cpu") | |
else: | |
self.sd.text_encoder.to("cpu") | |
self.prompt_cache = cache | |
self.prompt_pairs = prompt_pairs | |
# end hook_before_train_loop | |
# move vae to device so we can encode on the fly | |
# todo cache latents | |
self.sd.vae.to(self.device_torch) | |
self.sd.vae.eval() | |
self.sd.vae.requires_grad_(False) | |
if self.train_config.gradient_checkpointing: | |
# may get disabled elsewhere | |
self.sd.unet.enable_gradient_checkpointing() | |
flush() | |
# end hook_before_train_loop | |
def hook_train_loop(self, batch): | |
dtype = get_torch_dtype(self.train_config.dtype) | |
with torch.no_grad(): | |
### LOOP SETUP ### | |
noise_scheduler = self.sd.noise_scheduler | |
optimizer = self.optimizer | |
lr_scheduler = self.lr_scheduler | |
### TARGET_PROMPTS ### | |
# get a random pair | |
prompt_pair: EncodedPromptPair = self.prompt_pairs[ | |
torch.randint(0, len(self.prompt_pairs), (1,)).item() | |
] | |
# move to device and dtype | |
prompt_pair.to(self.device_torch, dtype=dtype) | |
### PREP REFERENCE IMAGES ### | |
imgs, prompts, network_weights = batch | |
network_pos_weight, network_neg_weight = network_weights | |
if isinstance(network_pos_weight, torch.Tensor): | |
network_pos_weight = network_pos_weight.item() | |
if isinstance(network_neg_weight, torch.Tensor): | |
network_neg_weight = network_neg_weight.item() | |
# get an array of random floats between -weight_jitter and weight_jitter | |
weight_jitter = self.slider_config.weight_jitter | |
if weight_jitter > 0.0: | |
jitter_list = random.uniform(-weight_jitter, weight_jitter) | |
network_pos_weight += jitter_list | |
network_neg_weight += (jitter_list * -1.0) | |
# if items in network_weight list are tensors, convert them to floats | |
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype) | |
# split batched images in half so left is negative and right is positive | |
negative_images, positive_images = torch.chunk(imgs, 2, dim=3) | |
height = positive_images.shape[2] | |
width = positive_images.shape[3] | |
batch_size = positive_images.shape[0] | |
positive_latents = self.sd.encode_images(positive_images) | |
negative_latents = self.sd.encode_images(negative_images) | |
self.sd.noise_scheduler.set_timesteps( | |
self.train_config.max_denoising_steps, device=self.device_torch | |
) | |
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch) | |
current_timestep_index = timesteps.item() | |
current_timestep = noise_scheduler.timesteps[current_timestep_index] | |
timesteps = timesteps.long() | |
# get noise | |
noise_positive = self.sd.get_latent_noise( | |
pixel_height=height, | |
pixel_width=width, | |
batch_size=batch_size, | |
noise_offset=self.train_config.noise_offset, | |
).to(self.device_torch, dtype=dtype) | |
noise_negative = noise_positive.clone() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps) | |
noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps) | |
### CFG SLIDER TRAINING PREP ### | |
# get CFG txt latents | |
noisy_cfg_latents = build_latent_image_batch_for_prompt_pair( | |
pos_latent=noisy_positive_latents, | |
neg_latent=noisy_negative_latents, | |
prompt_pair=prompt_pair, | |
prompt_chunk_size=self.prompt_chunk_size, | |
) | |
noisy_cfg_latents.requires_grad = False | |
assert not self.network.is_active | |
# 4.20 GB RAM for 512x512 | |
positive_latents = self.sd.predict_noise( | |
latents=noisy_cfg_latents, | |
text_embeddings=train_tools.concat_prompt_embeddings( | |
prompt_pair.positive_target, # negative prompt | |
prompt_pair.negative_target, # positive prompt | |
self.train_config.batch_size, | |
), | |
timestep=current_timestep, | |
guidance_scale=1.0 | |
) | |
positive_latents.requires_grad = False | |
neutral_latents = self.sd.predict_noise( | |
latents=noisy_cfg_latents, | |
text_embeddings=train_tools.concat_prompt_embeddings( | |
prompt_pair.positive_target, # negative prompt | |
prompt_pair.empty_prompt, # positive prompt (normally neutral | |
self.train_config.batch_size, | |
), | |
timestep=current_timestep, | |
guidance_scale=1.0 | |
) | |
neutral_latents.requires_grad = False | |
unconditional_latents = self.sd.predict_noise( | |
latents=noisy_cfg_latents, | |
text_embeddings=train_tools.concat_prompt_embeddings( | |
prompt_pair.positive_target, # negative prompt | |
prompt_pair.positive_target, # positive prompt | |
self.train_config.batch_size, | |
), | |
timestep=current_timestep, | |
guidance_scale=1.0 | |
) | |
unconditional_latents.requires_grad = False | |
positive_latents_chunks = torch.chunk(positive_latents, self.prompt_chunk_size, dim=0) | |
neutral_latents_chunks = torch.chunk(neutral_latents, self.prompt_chunk_size, dim=0) | |
unconditional_latents_chunks = torch.chunk(unconditional_latents, self.prompt_chunk_size, dim=0) | |
prompt_pair_chunks = split_prompt_pairs(prompt_pair, self.prompt_chunk_size) | |
noisy_cfg_latents_chunks = torch.chunk(noisy_cfg_latents, self.prompt_chunk_size, dim=0) | |
assert len(prompt_pair_chunks) == len(noisy_cfg_latents_chunks) | |
noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0) | |
noise = torch.cat([noise_positive, noise_negative], dim=0) | |
timesteps = torch.cat([timesteps, timesteps], dim=0) | |
network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0] | |
flush() | |
loss_float = None | |
loss_mirror_float = None | |
self.optimizer.zero_grad() | |
noisy_latents.requires_grad = False | |
# TODO allow both processed to train text encoder, for now, we just to unet and cache all text encodes | |
# if training text encoder enable grads, else do context of no grad | |
# with torch.set_grad_enabled(self.train_config.train_text_encoder): | |
# # text encoding | |
# embedding_list = [] | |
# # embed the prompts | |
# for prompt in prompts: | |
# embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype) | |
# embedding_list.append(embedding) | |
# conditional_embeds = concat_prompt_embeds(embedding_list) | |
# conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds]) | |
if self.train_with_dataset: | |
embedding_list = [] | |
with torch.set_grad_enabled(self.train_config.train_text_encoder): | |
for prompt in prompts: | |
# get embedding form cache | |
embedding = self.prompt_cache[prompt] | |
embedding = embedding.to(self.device_torch, dtype=dtype) | |
embedding_list.append(embedding) | |
conditional_embeds = concat_prompt_embeds(embedding_list) | |
# double up so we can do both sides of the slider | |
conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds]) | |
else: | |
# throw error. Not supported yet | |
raise Exception("Datasets and targets required for ultimate slider") | |
if self.model_config.is_xl: | |
# todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop | |
network_multiplier_list = network_multiplier | |
noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0) | |
noise_list = torch.chunk(noise, 2, dim=0) | |
timesteps_list = torch.chunk(timesteps, 2, dim=0) | |
conditional_embeds_list = split_prompt_embeds(conditional_embeds) | |
else: | |
network_multiplier_list = [network_multiplier] | |
noisy_latent_list = [noisy_latents] | |
noise_list = [noise] | |
timesteps_list = [timesteps] | |
conditional_embeds_list = [conditional_embeds] | |
## DO REFERENCE IMAGE TRAINING ## | |
reference_image_losses = [] | |
# allow to chunk it out to save vram | |
for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip( | |
network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list | |
): | |
with self.network: | |
assert self.network.is_active | |
self.network.multiplier = network_multiplier | |
noise_pred = self.sd.predict_noise( | |
latents=noisy_latents.to(self.device_torch, dtype=dtype), | |
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype), | |
timestep=timesteps, | |
) | |
noise = noise.to(self.device_torch, dtype=dtype) | |
if self.sd.prediction_type == 'v_prediction': | |
# v-parameterization training | |
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps) | |
else: | |
target = noise | |
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") | |
loss = loss.mean([1, 2, 3]) | |
# todo add snr gamma here | |
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001: | |
# add min_snr_gamma | |
loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma) | |
loss = loss.mean() | |
loss = loss * self.slider_config.img_loss_weight | |
loss_slide_float = loss.item() | |
loss_float = loss.item() | |
reference_image_losses.append(loss_float) | |
# back propagate loss to free ram | |
loss.backward() | |
flush() | |
## DO CFG SLIDER TRAINING ## | |
cfg_loss_list = [] | |
with self.network: | |
assert self.network.is_active | |
for prompt_pair_chunk, \ | |
noisy_cfg_latent_chunk, \ | |
positive_latents_chunk, \ | |
neutral_latents_chunk, \ | |
unconditional_latents_chunk \ | |
in zip( | |
prompt_pair_chunks, | |
noisy_cfg_latents_chunks, | |
positive_latents_chunks, | |
neutral_latents_chunks, | |
unconditional_latents_chunks, | |
): | |
self.network.multiplier = prompt_pair_chunk.multiplier_list | |
target_latents = self.sd.predict_noise( | |
latents=noisy_cfg_latent_chunk, | |
text_embeddings=train_tools.concat_prompt_embeddings( | |
prompt_pair_chunk.positive_target, # negative prompt | |
prompt_pair_chunk.target_class, # positive prompt | |
self.train_config.batch_size, | |
), | |
timestep=current_timestep, | |
guidance_scale=1.0 | |
) | |
guidance_scale = 1.0 | |
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk) | |
# make offset multiplier based on actions | |
offset_multiplier_list = [] | |
for action in prompt_pair_chunk.action_list: | |
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE: | |
offset_multiplier_list += [-1.0] | |
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE: | |
offset_multiplier_list += [1.0] | |
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype) | |
# make offset multiplier match rank of offset | |
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1) | |
offset *= offset_multiplier | |
offset_neutral = neutral_latents_chunk | |
# offsets are already adjusted on a per-batch basis | |
offset_neutral += offset | |
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing | |
loss = torch.nn.functional.mse_loss(target_latents.float(), offset_neutral.float(), reduction="none") | |
loss = loss.mean([1, 2, 3]) | |
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001: | |
# match batch size | |
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])] | |
# add min_snr_gamma | |
loss = apply_snr_weight(loss, timesteps_index_list, noise_scheduler, | |
self.train_config.min_snr_gamma) | |
loss = loss.mean() * prompt_pair_chunk.weight * self.slider_config.cfg_loss_weight | |
loss.backward() | |
cfg_loss_list.append(loss.item()) | |
del target_latents | |
del offset_neutral | |
del loss | |
flush() | |
# apply gradients | |
optimizer.step() | |
lr_scheduler.step() | |
# reset network | |
self.network.multiplier = 1.0 | |
reference_image_loss = sum(reference_image_losses) / len(reference_image_losses) if len( | |
reference_image_losses) > 0 else 0.0 | |
cfg_loss = sum(cfg_loss_list) / len(cfg_loss_list) if len(cfg_loss_list) > 0 else 0.0 | |
loss_dict = OrderedDict({ | |
'loss/img': reference_image_loss, | |
'loss/cfg': cfg_loss, | |
}) | |
return loss_dict | |
# end hook_train_loop | |