from transformers import CLIPImageProcessor, BitsAndBytesConfig, AutoTokenizer from .caption import default_long_prompt, default_short_prompt, default_replacements, clean_caption import torch from PIL import Image class FuyuImageProcessor: def __init__(self, device='cuda'): from transformers import FuyuProcessor, FuyuForCausalLM self.device = device self.model: FuyuForCausalLM = None self.processor: FuyuProcessor = None self.dtype = torch.bfloat16 self.tokenizer: AutoTokenizer self.is_loaded = False def load_model(self): from transformers import FuyuProcessor, FuyuForCausalLM model_path = "adept/fuyu-8b" kwargs = {"device_map": self.device} kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=self.dtype, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) self.processor = FuyuProcessor.from_pretrained(model_path) self.model = FuyuForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) self.is_loaded = True self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = FuyuForCausalLM.from_pretrained(model_path, torch_dtype=self.dtype, **kwargs) self.processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=self.tokenizer) def generate_caption( self, image: Image, prompt: str = default_long_prompt, replacements=default_replacements, max_new_tokens=512 ): # prepare inputs for the model # text_prompt = f"{prompt}\n" # image = image.convert('RGB') model_inputs = self.processor(text=prompt, images=[image]) model_inputs = {k: v.to(dtype=self.dtype if torch.is_floating_point(v) else v.dtype, device=self.device) for k, v in model_inputs.items()} generation_output = self.model.generate(**model_inputs, max_new_tokens=max_new_tokens) prompt_len = model_inputs["input_ids"].shape[-1] output = self.tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True) output = clean_caption(output, replacements=replacements) return output # inputs = self.processor(text=text_prompt, images=image, return_tensors="pt") # for k, v in inputs.items(): # inputs[k] = v.to(self.device) # # autoregressively generate text # generation_output = self.model.generate(**inputs, max_new_tokens=max_new_tokens) # generation_text = self.processor.batch_decode(generation_output[:, -max_new_tokens:], skip_special_tokens=True) # output = generation_text[0] # # return clean_caption(output, replacements=replacements)