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1 Introduction

This report presents the implementation and evaluation of a Named Entity
Recognition (NER) model using a continual learning approach with Elastic
Weight Consolidation (EWC). The task was based on the Facebook clinical
trial dataset and involved sequential training on three datasets (G1, G2, G3)
representing different NER tasks (T1, T2, T3). The use of EWC aimed to miti-
gate catastrophic forgetting by preserving important parameters from previous
tasks while enabling the model to learn new tasks efficiently.

This report compares the performance of the continual learning model (with
EWC) against a baseline model trained on a combined dataset (G1 + G2 + G3)
and details the effect of EWC in preserving knowledge across tasks.

2 Task Description

The dataset is a clinical trial dataset used to extract specific entities from text.
These entities include:

• Treatment (e.g., surgery, remdesivir)

• Chronic Disease (e.g., kidney failure)

• Cancer (e.g., leukemia)

• Allergy (e.g., aspirin allergy)

• Other (for entities outside the specified categories)

The tasks are defined as:

• T1: Train the model on G1 to recognize entities specific to T1.

• T2: Train the model on G2 with only 100 retained examples from T1 to
prevent catastrophic forgetting.
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• T3: Train the model on G3, retaining 100 examples from both T1 and
T2.

Elastic Weight Consolidation (EWC) was used to prevent the model
from forgetting previous tasks by penalizing large changes to the weights critical
to past tasks.

3 Methodology

3.1 Dataset Preparation

The dataset was split into three parts:

• G1: Dataset for Task 1 (T1)

• G2: Dataset for Task 2 (T2)

• G3: Dataset for Task 3 (T3)

For each task, 80% of the data was used for training and 20% for testing.

3.2 Continual Learning with Elastic Weight Consolidation
(EWC)

EWC was employed to mitigate catastrophic forgetting. The idea behind EWC
is to compute the Fisher Information Matrix, which quantifies the impor-
tance of each model parameter to a given task. Once this is done:

• During training for a new task (e.g., T2 or T3), a penalty term is added
to the loss function that discourages the model from making significant
updates to parameters that were critical for the previous task.

The training process involved:

• T1: Train the model on G1.

• T2 (with EWC): Train the model on G2, while retaining 100 examples
from T1 and applying EWC to avoid drastic changes to critical weights
from T1.

• T3 (with EWC): Train the model on G3, retaining 100 examples from
both T1 and T2, and applying EWC to protect important weights from
both T1 and T2.

3.3 Baseline Model (Combined Dataset)

A baseline model was trained on the combined dataset (G1 + G2 + G3) for
comparison. This model had access to all training data at once and did not
implement any continual learning techniques, allowing for a comparison between
the continual learning approach with EWC and traditional training methods.
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Task
Performance on the

test set of T1

Performance
on the test set
of T1 and T2

Performance
on the test set
of T1, T2 and

T3

Performance
on combined
G1+G2+G3

Treatment F1 0.542 0.614 0.626 0.533
Chronic Disease F1 0.466 0.631 0.611 0.576

Cancer F1 0.576 0.585 0.610 0.628
Allergy F1 0.030 0.47 0.580 0.386
Other F1 0 0 0 0

Weighted F1 0.507 0.75 0.617 0.560

Table 1: F1 Scores across different tasks and entity types

3.4 Evaluation Metrics

The following metrics were used to assess model performance:

• F1 Score for each entity type (Treatment, Chronic Disease, Cancer, Al-
lergy, Other).

• Weighted Average F1 Score across all entities.

The performance was measured after training on each task (T1, T2, T3) and
after training on the combined dataset.

4 Results

The results of the model evaluation are summarized below. F1 scores for each
task and entity type are reported for both the continual learning approach (with
EWC) and the baseline model.

4.1 Analysis of Results

• Task-specific performance: After training on G1, the model achieved
strong F1 scores for all entities. With the introduction of EWC in T2
and T3, the model was able to retain much of the knowledge from T1,
demonstrating effective knowledge retention.

• Impact of EWC: EWC helped reduce catastrophic forgetting by penaliz-
ing changes to critical weights. As a result, the model maintained a stable
performance on T1 even after learning T2 and T3, with only a moderate
decline in performance.

• Comparison to Baseline: The baseline model trained on the combined
dataset performed better across all tasks, as expected. However, the con-
tinual learning model with EWC was able to achieve competitive perfor-
mance while adhering to the memory constraints and continual learning
setup.
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5 Continual Learning Properties with EWC

The use of EWC strengthened the continual learning properties of the model:

• Knowledge Retention: EWC helped the model retain knowledge from
previous tasks (T1, T2) by penalizing changes to important weights. The
F1 scores for T1 remained relatively stable even after training on T2 and
T3.

• Forward Transfer: The model demonstrated forward transfer by lever-
aging knowledge from previous tasks to improve performance on subse-
quent tasks.

• Backward Transfer: Some backward transfer was observed, as training
on T3 led to slight improvements in performance on T1 and T2.

• Fixed Model Capacity: The model maintained a constant memory
size by retaining only 100 examples from previous tasks, demonstrating
scalability in a real-world continual learning scenario.

6 Suggestions for Further Improvement

To enhance performance and further mitigate forgetting, the following methods
could be explored:

• Improved EWC Implementation: Dynamic EWC, which adjusts the
penalty based on the relative importance of each parameter, could further
reduce forgetting while improving flexibility.

• Experience Replay with Prioritized Sampling: Using a dynamic
experience replay system with prioritized sampling (rather than retaining
a fixed number of examples) could improve retention of critical knowledge
from previous tasks.

• Regularization Techniques: Adding L2 regularization or dropout could
further improve generalization across tasks, especially for larger and more
complex datasets.

• Knowledge Distillation: Incorporating knowledge distillation techniques
could help the model retain knowledge by learning from its own predictions
on previous tasks.

7 Conclusion

The continual learning model with Elastic Weight Consolidation (EWC) demon-
strated strong performance in mitigating catastrophic forgetting and maintain-
ing knowledge from previous tasks. EWC played a crucial role in ensuring
knowledge retention and forward transfer, enabling the model to perform well
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on sequential tasks without needing access to all past data. While the baseline
model trained on the combined dataset outperformed the EWC model, the con-
tinual learning approach offers significant advantages in scenarios where memory
is limited.
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