from smolagents import CodeAgent from smolagents import HfApiModel from smolagents import tool #from smolagents import DuckDuckGoSearchTool import os from datasets import load_dataset dataset = load_dataset("bprateek/amazon_product_description", revision="main", token=os.getenv('Testing')) @tool def predict_price_tool(arg1:str)-> float: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """This is a tool which look on a dataset as defined by user input and give you a price Args: arg1: the category of product """ filter_dataset = dataset['Category' == arg1] filter_dataset_min = filter_dataset['Selling Price'].min() filter_dataset_max = filter_dataset['Selling Price'].min() return (filter_dataset_min + filter_dataset_max )/2 #Agent Example model = HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", token=os.getenv('Testing')) agent = CodeAgent(tools=[predict_price_tool], model=model) agent.run("Get price quoatition for catageory = Toys & Games | Arts & Crafts | Craft Kits | Paper Craft") # Access HF Hub #from huggingface_hub import list_models #for model in list_models(limit=10, sort="downloads", direction=-1): # print(model.id, model.downloads)