File size: 5,088 Bytes
af779a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NIST Questions\n",
"This Notebook utilises the points under Govern, Map, Measure, and Manage in the NIST AI RMF to query a policy and obtain responses of how well the policy aligns."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import Packages"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import openai\n",
"from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex\n",
"import nest_asyncio\n",
"import pandas as pd\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OpenAI API Key"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"openai.api_key = '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'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import the GenAI Policy\n",
"The policies used here was created by AI after being asked to create a policy aligned with the NIST document which was uploaded"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"gold_policy = SimpleDirectoryReader(input_files=['data/Badguys AI Ethics and Responsible AI Policy.pdf']).load_data()\n",
"mock_policy = SimpleDirectoryReader(input_files=['data/Mock Policy.pdf']).load_data()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set chunk information"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"chunk_size = 128\n",
"chunk_overlap = 20\n",
"similarity_top_k = 6"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Read text files of NIST AI RMF statements"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"Govern = open(\"./Statements/Govern.txt\", \"r\").readlines()\n",
"Govern = [Govern[i].replace(\"\\n\", \"\") for i in range(len(Govern))]\n",
"\n",
"Map = open(\"./Statements/Map.txt\", \"r\").readlines()\n",
"Map = [Map[i].replace(\"\\n\", \"\") for i in range(len(Map))]\n",
"\n",
"Measure = open(\"./Statements/Measure.txt\", \"r\").readlines()\n",
"Measure = [Measure[i].replace(\"\\n\", \"\") for i in range(len(Measure))]\n",
"\n",
"Manage = open(\"./Statements/Manage.txt\", \"r\").readlines()\n",
"Manage = [Manage[i].replace(\"\\n\", \"\") for i in range(len(Manage))]\n",
"\n",
"eval_questions = np.concatenate((Govern, Map, Measure, Manage))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define the question-asking function"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def ask_questions(docs):\n",
" service_context = ServiceContext.from_defaults(chunk_size=chunk_size, chunk_overlap=20)\n",
" index = VectorStoreIndex.from_documents(docs, service_context=service_context)\n",
" query_engine = index.as_query_engine(similarity_top_k=similarity_top_k)\n",
" responses = []\n",
" sources = []\n",
" for question in eval_questions:\n",
" response = query_engine.query(\"Give evidence of where the policy aligns with the following point: \" + question)\n",
" source = \"\"\n",
" for i in range(similarity_top_k):\n",
" source += response.source_nodes[i].node.get_content(metadata_mode=\"all\") + \"\\n\\n-----\\n\"\n",
" responses.append(response.response)\n",
" sources.append(source)\n",
" return responses, sources"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Query the document"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Data = pd.DataFrame(index=eval_questions)\n",
"Data[\"Gold\"], Data[\"Gold Sources\"] = ask_questions(gold_policy)\n",
"Data[\"Company\"], Data[\"Company Sources\"] = ask_questions(mock_policy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Write to .csv file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Data.to_csv(\"./Results/Compare.csv\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "docu_compare",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|