File size: 5,088 Bytes
af779a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# NIST Questions\n",
    "This Notebook utilises the points under Govern, Map, Measure, and Manage in the NIST AI RMF to query a policy and obtain responses of how well the policy aligns."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Import Packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import openai\n",
    "from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex\n",
    "import nest_asyncio\n",
    "import pandas as pd\n",
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## OpenAI API Key"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "openai.api_key = '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'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Import the GenAI Policy\n",
    "The policies used here was created by AI after being asked to create a policy aligned with the NIST document which was uploaded"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "gold_policy = SimpleDirectoryReader(input_files=['data/Badguys AI Ethics and Responsible AI Policy.pdf']).load_data()\n",
    "mock_policy = SimpleDirectoryReader(input_files=['data/Mock Policy.pdf']).load_data()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Set chunk information"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "chunk_size = 128\n",
    "chunk_overlap = 20\n",
    "similarity_top_k = 6"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Read text files of NIST AI RMF statements"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "Govern = open(\"./Statements/Govern.txt\", \"r\").readlines()\n",
    "Govern = [Govern[i].replace(\"\\n\", \"\") for i in range(len(Govern))]\n",
    "\n",
    "Map = open(\"./Statements/Map.txt\", \"r\").readlines()\n",
    "Map = [Map[i].replace(\"\\n\", \"\") for i in range(len(Map))]\n",
    "\n",
    "Measure = open(\"./Statements/Measure.txt\", \"r\").readlines()\n",
    "Measure = [Measure[i].replace(\"\\n\", \"\") for i in range(len(Measure))]\n",
    "\n",
    "Manage = open(\"./Statements/Manage.txt\", \"r\").readlines()\n",
    "Manage = [Manage[i].replace(\"\\n\", \"\") for i in range(len(Manage))]\n",
    "\n",
    "eval_questions = np.concatenate((Govern, Map, Measure, Manage))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Define the question-asking function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def ask_questions(docs):\n",
    "    service_context = ServiceContext.from_defaults(chunk_size=chunk_size, chunk_overlap=20)\n",
    "    index = VectorStoreIndex.from_documents(docs, service_context=service_context)\n",
    "    query_engine = index.as_query_engine(similarity_top_k=similarity_top_k)\n",
    "    responses = []\n",
    "    sources = []\n",
    "    for question in eval_questions:\n",
    "        response = query_engine.query(\"Give evidence of where the policy aligns with the following point: \" + question)\n",
    "        source = \"\"\n",
    "        for i in range(similarity_top_k):\n",
    "            source += response.source_nodes[i].node.get_content(metadata_mode=\"all\") + \"\\n\\n-----\\n\"\n",
    "        responses.append(response.response)\n",
    "        sources.append(source)\n",
    "    return responses, sources"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Query the document"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Data = pd.DataFrame(index=eval_questions)\n",
    "Data[\"Gold\"], Data[\"Gold Sources\"] = ask_questions(gold_policy)\n",
    "Data[\"Company\"], Data[\"Company Sources\"] = ask_questions(mock_policy)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Write to .csv file"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Data.to_csv(\"./Results/Compare.csv\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "docu_compare",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}