import json import random from pathlib import Path import gradio as gr import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline # Constants MIN_WORDS = 50 MAX_WORDS = 500 SAMPLE_JSON_PATH = Path('samples.json') # Load models def load_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) return pipeline('text-classification', model=model, tokenizer=tokenizer, truncation=True, max_length=512, top_k=4) classifier = load_model("./deberta-base") # Load sample essays with open(SAMPLE_JSON_PATH, 'r') as f: demo_essays = json.load(f) # Global variable to store the current essay index current_essay_index = None TEXT_CLASS_MAPPING = { 'LABEL_2': 'Machine-Generated', 'LABEL_0': 'Human-Written', 'LABEL_3': 'Machine-Written, Machine-Humanized', 'LABEL_1': 'Human-Written, Machine-Polished' } def process_result_detection_tab(text): result = classifier(text)[0] labels = [TEXT_CLASS_MAPPING[x['label']] for x in result] scores = list(np.array([x['score'] for x in result])) final_results = dict(zip(labels, scores)) # Return only the label with the highest score return max(final_results, key=final_results.get) def update_detection_tab(name): if name == '': return "" return process_result_detection_tab(name) def active_button_detection_tab(input_text): if not (50 <= len(input_text.split()) <= 500): return gr.Button("Check Origin", variant="primary", interactive=False) return gr.Button("Check Origin", variant="primary", interactive=True) def clear_detection_tab(): return "", gr.Button("Check Origin", variant="primary", interactive=False) def count_words_detection_tab(text): return f'{len(text.split())}/500 words (Minimum 50 words)' def generate_text_challenge_tab(): global index mg = gr.Button("Machine-Generated", variant="secondary", interactive=True) hw = gr.Button("Human-Written", variant="secondary", interactive=True) mh = gr.Button("Machine-Humanized", variant="secondary", interactive=True) mp = gr.Button("Machine-Polished", variant="secondary", interactive=True) index = random.choice(range(80)) essay = demo_essays[index][0] return essay, mg, hw, mh, mp, '' def correct_label_challenge_tab(): if 0 <= index < 20 : return 'Human-Written' elif 20 <= index < 40: return 'Machine-Generated' elif 40 <= index < 60: return 'Machine-Polished' elif 60 <= index < 80: return 'Machine-Humanized' def show_result_challenge_tab(button): correct_btn = correct_label_challenge_tab() mg = gr.Button("Machine-Generated", variant="secondary") hw = gr.Button("Human-Written", variant="secondary") mh = gr.Button("Machine-Humanized", variant="secondary") mp = gr.Button("Machine-Polished", variant="secondary") if button == 'Machine-Generated': mg = gr.Button("Machine-Generated", variant="stop") elif button == 'Human-Written': hw = gr.Button("Human-Written", variant="stop") elif button == 'Machine-Humanized': mh = gr.Button("Machine-Humanized", variant="stop") elif button == 'Machine-Polished': mp = gr.Button("Machine-Polished", variant="stop") if correct_btn == 'Machine-Generated': mg = gr.Button("Machine-Generated", variant="primary") elif correct_btn == 'Human-Written': hw = gr.Button("Human-Written", variant="primary") elif correct_btn == 'Machine-Humanized': mh = gr.Button("Machine-Humanized", variant="primary") elif correct_btn == 'Machine-Polished': mp = gr.Button("Machine-Polished", variant="primary") outcome = 'Correct' if button == correct_btn else 'Incorrect' return outcome, mg, hw, mh, mp css = """ body, .gradio-container { font-family: Arial, sans-serif; } .gr-input, .gr-textarea { } .class-intro { padding: 15px; margin-bottom: 20px; border-radius: 5px; } .class-intro h2 { margin-top: 0; } .class-intro p { margin-bottom: 5px; } """ class_intro_html = """

Text Classes

Human-Written: Original text created by humans.

Machine-Generated: Text created by AI from basic prompts, without style instructions.

Human-Written, Machine-Polished: Human text refined by AI for grammar and flow, without new content.

Machine-Written, Machine-Humanized: AI-generated text modified to mimic human writing style.

""" with gr.Blocks(css=css) as demo: gr.Markdown("""

LLM-DetectAIve

""") with gr.Tab('Try it!'): gr.HTML(class_intro_html) with gr.Row(): input_text = gr.Textbox(placeholder="Paste your text here...", label="Text", lines=10, max_lines=15) with gr.Row(): wc = gr.Markdown("0/500 words (Minimum 50 words)") with gr.Row(): check_button = gr.Button("Check Origin", variant="primary", interactive=False) clear_button = gr.ClearButton([input_text], variant="stop") out = gr.Label(label='Result') clear_button.add(out) check_button.click(fn=update_detection_tab, inputs=[input_text], outputs=out) input_text.change(count_words_detection_tab, input_text, wc, show_progress=False) input_text.input( active_button_detection_tab, [input_text], [check_button], ) clear_button.click( clear_detection_tab, inputs=[], outputs=[input_text, check_button], ) with gr.Tab('Challenge Yourself!'): with gr.Row(): generate = gr.Button("Generate Sample Text", variant="primary") clear = gr.ClearButton([], variant="stop") with gr.Row(): text = gr.Textbox(value="", label="Text", lines=20, interactive=False) with gr.Row(): mg = gr.Button("Machine-Generated", variant="secondary", interactive=False) hw = gr.Button("Human-Written", variant="secondary", interactive=False) mh = gr.Button("Machine-Humanized", variant="secondary", interactive=False) mp = gr.Button("Machine-Polished", variant="secondary", interactive=False) with gr.Row(): result = gr.Label(label="Result", value="") clear.add([result, text]) generate.click(generate_text_challenge_tab, [], [text, mg, hw, mh, mp, result]) for button in [mg, hw, mh, mp]: button.click(show_result_challenge_tab, [button], [result, mg, hw, mh, mp]) clear.click(lambda: ("", gr.Button("Machine-Generated", variant="secondary", interactive=False), gr.Button("Human-Written", variant="secondary", interactive=False), gr.Button("Machine-Humanized", variant="secondary", interactive=False), gr.Button("Machine-Polished", variant="secondary", interactive=False), ""), outputs=[text, mg, hw, mh, mp, result]) demo.launch(share=False)