import gradio as gr from transformers import DebertaTokenizer, DebertaForSequenceClassification from transformers import pipeline save_path_abstract = './fine-tuned-deberta' model_abstract = DebertaForSequenceClassification.from_pretrained(save_path_abstract) tokenizer_abstract = DebertaTokenizer.from_pretrained(save_path_abstract) classifier_abstract = pipeline('text-classification', model=model_abstract, tokenizer=tokenizer_abstract) save_path_essay = './fine-tuned-deberta' model_essay = DebertaForSequenceClassification.from_pretrained(save_path_essay) tokenizer_essay = DebertaTokenizer.from_pretrained(save_path_essay) classifier_essay = pipeline('text-classification', model=model_essay, tokenizer=tokenizer_essay) def update(name, uploaded_file, radio_input): if uploaded_file is not None: return f"{name}, you uploaded a file named {uploaded_file.name}." else: if radio_input == 'Scientific Abstract': data = classifier_abstract(name)[0]['label'] if data == 'LABEL_0': return "human_text" if data == 'LABEL_1': return "machine_text" if data == 'LABEL_2': return "human-written | machine-polished" if data == 'LABEL_3': return "machine-generated | machine-humanized" else: if radio_input == 'Student Essay': data = classifier_essay(name)[0]['label'] if data == 'LABEL_0': return "human_text" if data == 'LABEL_1': return "machine_text" if data == 'LABEL_2': return "human-written | machine-polished" if data == 'LABEL_3': return "machine-generated | machine-humanized" # return "Hold on!" with gr.Blocks() as demo: gr.Markdown( """ Was this text written by human or AI?

Try detecting one of our sample texts:

""" ) with gr.Row(): for sample in ["Machine-Generated", "Human-Written", "Machine-Humanized", "Machine - Polished"]: gr.Button(sample, variant="outline") with gr.Row(): radio_button = gr.Radio(['Scientific Abstract', 'Student Essay'], label = 'Text Type', info = 'We have specialized models that work on domain-specific text.') with gr.Row(): input_text = gr.Textbox(placeholder="Paste your text here...", label="", lines=10) file_input = gr.File(label="Upload File") #file_input = gr.File(label="", visible=False) # Hide the actual file input with gr.Row(): check_button = gr.Button("Check Origin", variant="primary") clear_button = gr.ClearButton([input_text, file_input, radio_button], variant='stop') #upload_button = gr.Button("Upload File", variant="secondary") out = gr.Textbox(label="OUTPUT", placeholder="", lines=2) clear_button.add(out) check_button.click(fn=update, inputs=[input_text, file_input, radio_button], outputs=out) #upload_button.click(lambda: None, inputs=[], outputs=[]).then(fn=update, inputs=[input_text, file_input], outputs=out) # Adding JavaScript to simulate file input click gr.Markdown( """ """ ) demo.launch(share=True)