Spaces:
Sleeping
Sleeping
File size: 9,799 Bytes
51999bc 503f165 51999bc 503f165 51999bc f9c8e59 d2a4567 f9c8e59 d2a4567 69e59ef d2a4567 9265530 51999bc 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 d2a4567 9265530 51999bc 503f165 51999bc 503f165 51999bc 503f165 51999bc 8fa301f 51999bc f9c8e59 51999bc f758e02 51999bc bef2827 51999bc f758e02 51999bc f758e02 51999bc f758e02 69e59ef 51999bc 69e59ef 51999bc 69e59ef f758e02 51999bc 69e59ef 51999bc 503f165 8fa301f 51999bc 503f165 51999bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import streamlit as st
from PIL import Image
import os
from deepforest import main
from deepforest import get_data
import matplotlib.pyplot as plt
# from predict import extract_features, predict_similarity, compare_features, extract_features_cp
import os, re
import streamlit as st
import pandas as pd
from PIL import Image
import tempfile
from inference import split_image_from_dataframe
from datetime import datetime
from predict import extract_features, predict_similarity, compare_features, extract_features_cp
import cv2
from PIL import Image
import os
import numpy as np
import urllib.request
import glob
# intake library and plugin
# import intake
# from intake_zenodo_fetcher import download_zenodo_files_for_entry
# geospatial libraries
# import geopandas as gpd
# from rasterio.transform import from_origin
# import rasterio.features
# import fiona
# from shapely.geometry import shape, mapping, box
# from shapely.geometry.multipolygon import MultiPolygon
# # machine learning libraries
# from detectron2 import model_zoo
# from detectron2.engine import DefaultPredictor
# from detectron2.utils.visualizer import Visualizer, ColorMode
# from detectron2.config import get_cfg
# from detectron2.engine import DefaultTrainer
# # define the URL to retrieve the model
# fn = 'model_final.pth'
# url = f'https://zenodo.org/record/5515408/files/{fn}?download=1'
# urllib.request.urlretrieve(url, config['model'] + '/' + fn)
# import geoviews.tile_sources as gts
# import hvplot.pandas
# import hvplot.xarray
# # hv.extension('bokeh', width=100)
# cfg = get_cfg()
# # if you want to make predictions using a CPU, run the following line. If using GPU, hash it out.
# cfg.MODEL.DEVICE='cuda'
# # model and hyperparameter selection
# cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml"))
# cfg.DATALOADER.NUM_WORKERS = 2
# cfg.SOLVER.IMS_PER_BATCH = 2
# cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
# ### path to the saved pre-trained model weights
# cfg.MODEL.WEIGHTS = config['model'] + '/model_final.pth'
# # set confidence threshold at which we predict
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.15
# #### Settings for predictions using detectron config
# predictor = DefaultPredictor(cfg)
# outputs = predictor(im)
# v = Visualizer(im[:, :, ::-1], scale=1.5, instance_mode=ColorMode.IMAGE_BW) # remove the colors of unsegmented pixels
# v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# image = cv2.cvtColor(v.get_image()[:, :, :], cv2.COLOR_BGR2RGB)
# st.image(image, caption='Segmented Panoramic Image Detecttree', channels ='RGB', use_column_width=True)
model = main.deepforest()
model.use_release()
# Set the page configuration
st.set_page_config(page_title="Wise-Vision", page_icon=":deciduous_tree:")
# Title and description
st.title("🌳 Wise-Vision")
st.subheader("AI + Environment Hackathon 2024")
# Sidebar information
st.sidebar.title("About")
st.sidebar.info(
"""
This app is designed for the AI + Environment Hackathon 2024.
Upload a panoramic image and specify a folder path to detect tree species in the image.
Upload a word file to integrate knowledge into the image.
Output will be a panoramic image with identified trees and knowledge symbols.
"""
)
st.sidebar.title("Contact")
st.sidebar.info(
"""
For more information, contact us at:
[[email protected]]
"""
)
script_dir = os.path.dirname(os.path.abspath(__file__))
# Create a new folder within the script directory for storing cropped images
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
output_folder_name = f"output_{timestamp}"
output_image_folder = os.path.join(script_dir, output_folder_name)
os.makedirs(output_image_folder, exist_ok=True)
output_image_folder = os.path.abspath(output_image_folder)
# Define paths for the image and Excel file within the new folder
cropped_image_path = os.path.join(output_image_folder, f"panoramic_{timestamp}.png")
excel_output_path = os.path.join(output_image_folder, f"results_{timestamp}.xlsx")
# Input: Upload panoramic image
uploaded_image = st.file_uploader("Upload a panoramic image", type=['png', 'jpeg', 'JPG'])
# Input: Folder path for tree species detection
def extract_treespecies_features(folder_path):
image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith(('png', 'jpg', 'jpeg', '.JPG'))]
species_feature_list = [{"feature": extract_features(file), "file_name": file} for file in image_files]
return species_feature_list
# print(species_feature_list[:2])
def perform_inference(cropped_images, species_feature_list, img_df):
for img_idx, item in enumerate(cropped_images):
image = item["image"]
feature_cp = extract_features_cp(image)
row_results = []
species_result = []
emoji = []
species_context = []
for idx, species in enumerate(species_feature_list):
# euclidean_dist, cos_sim = compare_features(feature_cp, species["feature"])
# print(f'Euclidean Distance: {euclidean_dist}')
# print(f'Cosine Similarity: {cos_sim}')
# Predict similarity
is_similar = predict_similarity(feature_cp, species["feature"], threshold=0.92)
# print(species)
# print(f'Are the images similar? {"Yes" if is_similar else "No"}')
result = "Yes" if is_similar else "No"
if result == "Yes":
item[f"result_{idx}"] = result
item[f"file_name_{idx}"] = species["file_name"]
row_results.append(species["file_name"])
# # Regular expression to match the tree species name
# species_pattern = r'identified_species\\([^\\]+) -'
# # Search for the pattern in the file path
# match = re.search(species_pattern, species["file_name"])
# Extract and print the tree species name if found
# species_info = retriever.invoke(f"Scientific name:{tree_species}")
# ans = generate_image(species_info, client)
# emoji.append(ans)
# text_context = [doc.page_content for doc in species_info]
# text_context = ", ".join(text_context)
# species_context.append(text_context)
# print(ans)
# species_result.append(tree_species)
img_df.at[img_idx, "species_identified"] = ", ".join(species_result) if species_result else "No similar species found"
img_df.at[img_idx, "result_file_path"] = ", ".join(row_results) if row_results else ""
# img_df.at[img_idx, "emoji"] = ", ".join(emoji) if emoji else ""
# img_df.at[img_idx, "retreived context"] = ", ".join(species_context) if species_context else ""
return cropped_images
# Function to simulate tree species detection
# Display uploaded image and detected tree species
if uploaded_image is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix='.JPG') as temp_file:
temp_file.write(uploaded_image.read())
temp_file_path = temp_file.name
# Open and display the image
# image = Image.open(uploaded_image)
sample_image_path = get_data(temp_file_path)
boxes = model.predict_image(path=sample_image_path, return_plot=False)
img_actual = model.predict_image(path=sample_image_path, return_plot=True, color=(137, 0, 0), thickness=9)
st.image(img_actual, caption='Segmented Panoramic Image', channels ='RGB', use_column_width=True)
st.success("Sample Dataframe:")
st.dataframe(boxes.head())
plt.imshow(img_actual[:,:,::-1])
# plt.show(img[:,:,::-1])
plt.savefig(cropped_image_path)
# if st.button("Next Step"):
accuracy_threshold = st.slider("Accuracy threshold for cropping images:",min_value=0.1, max_value=1.0, value=0.4)
images_list = split_image_from_dataframe(boxes, temp_file_path, output_folder_name)
image_width = 200
st.success("Sample Images:")
# Display the images in a row
col1, col2, col3 = st.columns(3)
with col1:
st.image(images_list[3]["image"], caption="Sample 1", width=image_width)
with col2:
st.image(images_list[4]["image"], caption="Sample 2", width=image_width)
with col3:
st.image(images_list[5]["image"], caption="Sample 3", width=image_width)
folder_path = './identified_species'
species_feature_list = extract_treespecies_features(folder_path)
final_result = perform_inference(images_list, species_feature_list, boxes)
st.success("Final Data:")
st.dataframe(boxes)
boxes.to_excel(excel_output_path)
for index, row in boxes.iterrows():
species_identified = row['species_identified']
if species_identified !="No similar species found":
cropped_image_path = row['cropped_image_path']
result_file_path = row['result_file_path']
if type(result_file_path) == list:
result_file_path = result_file_path[0]
result_file_path = result_file_path.split(',')[0]
st.write(species_identified)
col1, col2 = st.columns(2)
with col1:
st.image(cropped_image_path, caption='Cropped Image')
with col2:
st.image(result_file_path, caption='Species Match')
# Detect tree species
# detected_species = detect_tree_species(image, folder_path)
# Display detected tree species
# st.write("### Detected Tree Species:")
# for species in detected_species:
# st.write(f"- {species}")
|