raj999 commited on
Commit
902fe41
·
verified ·
1 Parent(s): 74e3ca0

Update app.py

Browse files

initial commit

Files changed (1) hide show
  1. app.py +37 -33
app.py CHANGED
@@ -1,11 +1,31 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,49 +35,33 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
 
20
  for val in history:
21
  if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from langchain.chains import RetrievalQA
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.llms import HuggingFaceHub
7
+ from langchain.prompts import PromptTemplate
8
+ from langchain.chains import ConversationalRetrievalChain
9
 
10
+ # Load the HuggingFace language model and embeddings
 
 
11
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
 
13
+ # Initialize the embeddings model for document retrieval
14
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
15
+
16
+ # Set up FAISS as the vector store for document retrieval
17
+ # (Replace 'documents' with your actual document list or corpus)
18
+ texts = ["Document 1", "Document 2", "Document 3"]
19
+ vector_store = FAISS.from_texts(texts, embeddings)
20
+
21
+ # Initialize the LangChain RAG system
22
+ retriever = vector_store.as_retriever()
23
+
24
+ # Set up ConversationalRetrievalChain using LangChain's tools
25
+ rag_chain = ConversationalRetrievalChain.from_llm(
26
+ HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta"),
27
+ retriever=retriever
28
+ )
29
 
30
  def respond(
31
  message,
 
35
  temperature,
36
  top_p,
37
  ):
38
+ # Combine history with the user message
39
+ conversation_history = [{"role": "system", "content": system_message}]
40
+
41
  for val in history:
42
  if val[0]:
43
+ conversation_history.append({"role": "user", "content": val[0]})
44
  if val[1]:
45
+ conversation_history.append({"role": "assistant", "content": val[1]})
 
 
46
 
47
+ conversation_history.append({"role": "user", "content": message})
48
 
49
+ # Retrieve documents using the retriever
50
+ response = rag_chain({"question": message, "chat_history": history})
 
 
 
 
 
 
51
 
52
+ # Format and return the response
53
+ return response['answer']
54
 
55
+ # Gradio interface setup
 
 
56
  demo = gr.ChatInterface(
57
  respond,
58
  additional_inputs=[
59
+ gr.Textbox(value="You are a helpful assistant.", label="System message"),
60
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
61
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
62
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
63
  ],
64
  )
65
 
 
66
  if __name__ == "__main__":
67
+ demo.launch()